当前位置: X-MOL 学术arXiv.cs.DM › 论文详情
Approximate counting CSP seen from the other side
arXiv - CS - Discrete Mathematics Pub Date : 2019-07-18 , DOI: arxiv-1907.07922
Andrei A. Bulatov; Stanislav Zivny

In this paper we study the complexity of counting Constraint Satisfaction Problems (CSPs) of the form #CSP($\mathcal{C}$,-), in which the goal is, given a relational structure $\mathbf{A}$ from a class $\mathcal{C}$ of structures and an arbitrary structure $\mathbf{B}$, to find the number of homomorphisms from $\mathbf{A}$ to $\mathbf{B}$. Flum and Grohe showed that #CSP($\mathcal{C}$,-) is solvable in polynomial time if $\mathcal{C}$ has bounded treewidth [FOCS'02]. Building on the work of Grohe [JACM'07] on decision CSPs, Dalmau and Jonsson then showed that, if $\mathcal{C}$ is a recursively enumerable class of relational structures of bounded arity, then assuming FPT $\neq$ #W[1], there are no other cases of #CSP($\mathcal{C}$,-) solvable exactly in polynomial time (or even fixed-parameter time) [TCS'04]. We show that, assuming FPT $\neq$ W[1] (under randomised parametrised reductions) and for $\mathcal{C}$ satisfying certain general conditions, #CSP($\mathcal{C}$,-) is not solvable even approximately for $\mathcal{C}$ of unbounded treewidth; that is, there is no fixed parameter tractable (and thus also not fully polynomial) randomised approximation scheme for #CSP($\mathcal{C}$,-). In particular, our condition generalises the case when $\mathcal{C}$ is closed under taking minors.
更新日期:2020-01-14

 

全部期刊列表>>
物理学研究前沿热点精选期刊推荐
chemistry
《自然》编辑与您分享如何成为优质审稿人-信息流
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
自然职场线上招聘会
科研绘图
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
阿拉丁试剂right
张晓晨
田蕾蕾
李闯创
刘天飞
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
X-MOL
苏州大学
廖矿标
深圳湾
试剂库存
down
wechat
bug