当前位置: X-MOL 学术arXiv.cs.DM › 论文详情
Approximate counting CSP seen from the other side
arXiv - CS - Discrete Mathematics Pub Date : 2019-07-18 , DOI: arxiv-1907.07922
Andrei A. Bulatov; Stanislav Zivny

In this paper we study the complexity of counting Constraint Satisfaction Problems (CSPs) of the form #CSP($\mathcal{C}$,-), in which the goal is, given a relational structure $\mathbf{A}$ from a class $\mathcal{C}$ of structures and an arbitrary structure $\mathbf{B}$, to find the number of homomorphisms from $\mathbf{A}$ to $\mathbf{B}$. Flum and Grohe showed that #CSP($\mathcal{C}$,-) is solvable in polynomial time if $\mathcal{C}$ has bounded treewidth [FOCS'02]. Building on the work of Grohe [JACM'07] on decision CSPs, Dalmau and Jonsson then showed that, if $\mathcal{C}$ is a recursively enumerable class of relational structures of bounded arity, then assuming FPT $\neq$ #W[1], there are no other cases of #CSP($\mathcal{C}$,-) solvable exactly in polynomial time (or even fixed-parameter time) [TCS'04]. We show that, assuming FPT $\neq$ W[1] (under randomised parametrised reductions) and for $\mathcal{C}$ satisfying certain general conditions, #CSP($\mathcal{C}$,-) is not solvable even approximately for $\mathcal{C}$ of unbounded treewidth; that is, there is no fixed parameter tractable (and thus also not fully polynomial) randomised approximation scheme for #CSP($\mathcal{C}$,-). In particular, our condition generalises the case when $\mathcal{C}$ is closed under taking minors.
更新日期:2020-01-14

 

全部期刊列表>>
化学/材料学中国作者研究精选
Springer Nature 2019高下载量文章和章节
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中国科学院大学化学科学学院
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug