当前位置: X-MOL 学术Phys. Rev. Lett. › 论文详情
Self-learning method for construction of analytical interatomic potentials to describe laser-excited materials
Physical Review Letters ( IF 9.227 ) Pub Date : 
Bernd Bauerhenne, Vladimir P. Lipp, Tobias Zier, Eeuwe S. Zijlstra, and Martin E. Garcia

Large-scale simulations using interatomic potentials provide deep insights in the processes occurring in solids subject to external perturbations. The atomistic description of laser-induced ultrafast nonthermal phenomena, however, constitutes a particularly difficult case and has so far not been possible on experimentally accessible length- and time scales because of two main reasons: (i) ab-initio simulations are restricted to a very small number of atoms and ultrashort times, and (ii) simulations relying on electronic temperature (Te) dependent interatomic potentials do not reach the necessary ab-initio accuracy. Here we develop a self-learning method for constructing Te-dependent interatomic potentials which permit ultra-large scale atomistic simulations of systems suddenly brought to extreme nonthermal states with Density-Functional-Theory (DFT) accuracy. The method always finds the global minimum in the parameter space. We derived a highly accurate analytical Te-dependent interatomic potential, Φ(Te), for silicon (Si), that yields a remarkably good description of laser excited and unexcited Si-bulk and Si-films. Using Φ(Te) we simulate the laser excitation of Si nanoparticles and find strong damping of their breathing modes due to nonthermal melting.
更新日期:2020-01-14

 

全部期刊列表>>
限时免费阅读临床医学内容
ACS材料视界
科学报告最新纳米科学与技术研究
清华大学化学系段昊泓
自然科研论文编辑服务
中国科学院大学楚甲祥
中国科学院微生物研究所潘国辉
中国科学院化学研究所
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug