当前位置: X-MOL 学术Neurochem. Res. › 论文详情
Activation of BDNF-AS/ADAR/p53 Positive Feedback Loop Inhibits Glioblastoma Cell Proliferation
Neurochemical Research ( IF 2.782 ) Pub Date : 2020-01-14 , DOI: 10.1007/s11064-019-02943-w
Xinwen Lv, Chunyan Gu, Shiwen Guo

Despite progress in conventional treatment for glioblastoma (GBM), the prognosis remains poor due to high tumor recurrence. Therefore, identification of new molecular mechanisms is a pressing need for betterment of GBM patient outcomes. qRT-PCR was used to determine BDNF-AS expression in GBM cells. CCK-8, EdU incorporation, and caspase-3 activity assays were employed to analyze biological functions of BDNF-AS. RIP and RNA pull-down were conducted to detect the interactions among BDNF-AS, ADAR, and p53. Actinomycin D was utilized to examine the stability of p53 mRNA. ChIP and luciferase reporter assays were performed to detect transcriptional activation of BDNF-AS by p53. We found that BDNF-AS was significantly downregulated in GBM cell lines, and its overexpression inhibited GBM cell growth, and promoted apoptosis. Importantly, we illustrated that BDNF-AS coupled with ADAR protein to potentiate stability of p53 mRNA and thus upregulate p53. Interestingly, we further identified p53 as a transcription factor of BDNF-AS, activating transcription of BNDF-AS. This study firstly demonstrated that BDNF-AS acted as a tumor suppressor in GBM and the positive feedback circuit of BDNF-AS/ADAR/p53 served an important mechanism to control GBM proliferation. Targeting this auto-regulatory loop may provide a potential therapeutic strategy for GBM patients.
更新日期:2020-01-14

 

全部期刊列表>>
化学/材料学中国作者研究精选
Springer Nature 2019高下载量文章和章节
ACS材料视界
南京大学
自然科研论文编辑服务
剑桥大学-
中国科学院大学化学科学学院
南开大学化学院周其林
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug