当前位置: X-MOL 学术Energy Fuels › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Chemical Looping Reforming of Glycerol for Continuous H2 Production by Moving-Bed Reactors: Simulation and Experiment
Energy & Fuels ( IF 5.3 ) Pub Date : 2020-01-16 , DOI: 10.1021/acs.energyfuels.9b03728
Bo Jiang 1, 2 , Lin Li 1, 3 , Qian Zhang 1 , Jing Ma 1 , Haotian Zhang 1 , Jun Bai 1 , Zhoufeng Bian 4 , Binlin Dou 5 , Sibudjing Kawi 2 , Dawei Tang 1
Affiliation  

Chemical looping reforming of biomass is a promising avenue for hydrogen generation. Both the design of reactor configurations and the screening of oxygen carriers represent major challenges in chemical looping technologies. Here, we synthesize three oxygen carriers (referred to as Ni–Al, NiW–Al, and W–Al) by a continuous coprecipitation method and first test them in a fixed-bed reactor. The NiW–Al showed the highest coke resistance, reducibility, and glycerol conversion. We employ an Ellingham diagram to explain the superior performance of the NiW–Al and screen operational temperatures from the standpoint of thermodynamics. Then, using the NiW–Al oxygen carriers, we investigate the effect of Ni-to-glycerol ratio, fuel reactor temperature, and steam-to-glycerol ratio in moving-bed reactors. Establishing two sets of five-stage equilibrium models in Aspen Plus, we compare the experimental results with simulations, discovering good agreement with each other. An isothermal and coke-free operational window was optimized at a fuel reactor temperature of 650 °C, a Ni-to-glycerol ratio of 0.9, and a steam-to-glycerol ratio of 4.5, achieving an average H2 yield of 1.5 mol-H2/mol-C. This work highlights the promise of combining moving-bed reactors with oxygen carriers with high oxygen storage capacity to utilize biomass by chemical looping reforming for continuous H2 generation.

中文翻译:

通过移动床反应器连续生产H 2的甘油的化学循环重整:模拟和实验

生物质的化学循环重整是产生氢气的有希望的途径。反应器配置的设计和氧载体的筛选都代表了化学循环技术的主要挑战。在这里,我们通过连续共沉淀法合成了三种氧载体(称为Ni-Al,NiW-Al和W-Al),并首先在固定床反应器中对其进行了测试。NiW-Al表现出最高的耐焦炭性,还原性和甘油转化率。我们使用Ellingham图从热力学的角度解释了NiW-Al的优异性能并筛选了运行温度。然后,使用NiW–Al氧载体,研究了移动床反应器中镍与甘油的比率,燃料反应堆温度以及蒸汽与甘油的比率的影响。在Aspen Plus中建立两组五阶段平衡模型,我们将实验结果与模拟进行比较,发现彼此之间有很好的一致性。在燃料反应堆温度为650°C,镍与甘油之比为0.9,蒸汽与甘油之比为4.5的条件下优化了等温无焦运行窗口2的产率为1.5mol-H 2 / mol-C。这项工作突显了将移动床反应器与具有高氧气存储能力的氧气载体结合起来的希望,以通过化学循环重整法连续利用H 2来利用生物质。
更新日期:2020-01-17
down
wechat
bug