当前位置: X-MOL 学术Chemosphere › 论文详情
The metolachlor degradation kinetics and bacterial community evolution in the soil bioelectrochemical remediation
Chemosphere ( IF 5.108 ) Pub Date : 2020-01-13 , DOI: 10.1016/j.chemosphere.2020.125915
Xiaojing Li; Yue Li; Xiaolin Zhang; Xiaodong Zhao; Xiaodong Chen; Yongtao Li

Herbicide-polluted soils have posed a threat to the crop growth and agro-product quality and safety. Even worse, the low-content of residue is still appreciable for a long time in subsurface soils. The soil bioelectrochemical remediation system (BERS) provides an inexhaustible electron acceptor to cause in situ indigenous microorganisms to generate biocurrent and accelerate the removal of metolachlor (ML). As a result of carbon fiber amendment, the highest current density (637 ± 19 mA/m2) to date has been generated in a soil BERS. The ML half-life and complete removal time decreased from 21 to 3 d and from 245 to 109 d, respectively. Importantly, the soil BERS was verified to be an effective treatment method for low-polluted sediments/soils, whether by ML or by its degradates. The quantitative degradates of ML showed that the first step was dechlorination based on the bioelectrochemical degradation pathway. The biocurrent selectively enriched special species, e.g., Geobacter and Thermincola for bioelectricity generation and Ralstonia, Phyllobacterium and Stenotrophomonas for degradation in soils. Meanwhile, Flavisolibacter and Gemmatimonas occupied the core niche in strengthening interspecific relationships by the biocurrent. This study firstly revealed the explicit abundance of Geobacter in agricultural soils and laid a foundation for the function design of mixed bacteria in the sediment/soil BERS.
更新日期:2020-01-14

 

全部期刊列表>>
2020新春特辑
限时免费阅读临床医学内容
ACS材料视界
科学报告最新纳米科学与技术研究
清华大学化学系段昊泓
自然科研论文编辑服务
中国科学院大学楚甲祥
中国科学院微生物研究所潘国辉
中国科学院化学研究所
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug