当前位置: X-MOL 学术Discret. Math. › 论文详情
A partial order on Motzkin paths
Discrete Mathematics ( IF 0.728 ) Pub Date : 2020-01-13 , DOI: 10.1016/j.disc.2019.111802
Wenjie Fang

The Tamari lattice, defined on Catalan objects such as binary trees and Dyck paths, is a well-studied poset in combinatorics. It is thus natural to try to extend it to other families of lattice paths. In this article, we fathom such a possibility by defining and studying an analogy of the Tamari lattice on Motzkin paths. While our generalization is not a lattice, each of its connected components is isomorphic to an interval in the classical Tamari lattice. With this structural result, we proceed to the enumeration of components and intervals in the poset of Motzkin paths we defined. We also extend the structural and enumerative results to Schröder paths. We conclude by a discussion on the relation between our work and that of Baril and Pallo (2014).
更新日期:2020-01-14

 

全部期刊列表>>
2020新春特辑
限时免费阅读临床医学内容
ACS材料视界
科学报告最新纳米科学与技术研究
清华大学化学系段昊泓
自然科研论文编辑服务
中国科学院大学楚甲祥
中国科学院微生物研究所潘国辉
中国科学院化学研究所
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug