当前位置: X-MOL 学术Environ. Sci. Pollut. Res. › 论文详情
Fabrication of Pt-Pd@ITO grown heterogeneous nanocatalyst as efficient remediator for toxic methyl parathion in aqueous media
Environmental Science and Pollution Research ( IF 2.914 ) Pub Date : 2020-01-13 , DOI: 10.1007/s11356-019-07548-y
Ali Muhammad Mahar, Aamna Balouch, Farah Naz Talpur, Abdullah, Pirah Panah, Raj Kumar, Ameet Kumar, Abdul Hameed Pato, Dadu Mal, Sagar Kumar, Akrajas Ali Umar

In this study, nano-sized ITO supported Pt-Pd bimetallic catalyst was synthesized for the degradation of methyl parathion pesticide, a common extremely toxic contaminant in aqueous solution. On the characterization with different techniques, a beautiful scenario of honeycomb architecture composed of ultra-small nanoneedles or fine hairs was found. Average size of nanocatalyst also confirmed which was in the range of 3–5 nm. High percent degradation (94%) was obtained in 30 s using 1.5 × 10− 1 mg of synthesized nanocatalyst, 0.5 mM NaBH4, and 110 W microwave radiations power. Recyclability of nanocatalyst was efficient till 4th cycle observed during study of reusability. The supported Pt-Pd bimetallic nanocatalyst on ITO displayed many advantages over conventional methods for degradation of methyl parathion pesticide, such as high percent degradation, short reaction time, small amount of nanocatalyst, and multitime reusability.
更新日期:2020-01-14

 

全部期刊列表>>
2020新春特辑
限时免费阅读临床医学内容
ACS材料视界
科学报告最新纳米科学与技术研究
清华大学化学系段昊泓
自然科研论文编辑服务
中国科学院大学楚甲祥
上海纽约大学William Glover
中国科学院化学研究所
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug