当前位置: X-MOL 学术Metall. Mater. Trans. B. › 论文详情
Cathodic Wear by Delamination of the Al 4 C 3 Layer During Aluminium Electrolysis
Metallurgical and Materials Transactions B ( IF 1.952 ) Pub Date : 2019-11-18 , DOI: 10.1007/s11663-019-01731-9
Aïmen E. Gheribi, Mojtaba Fallah Fini, Loig Rivoaland, Didier Lombard, Gervais Soucy, Patrice Chartrand

In aluminium reduction cells, an electrochemical reaction occurs between the molten electrolyte film below the aluminium pad and the carbon cathode blocks, leading to the formation of an Al4C3 layer on the cathode blocks. The properties and role of this Al4C3 layer are therefore important for the aluminium production industry, as they could help increase the life expectancy of electrolysis cells and impact the resistive voltage losses. The purpose of this study is to gain a better understanding of the formation, growth and mechanical stability of the aluminium carbide layer formed on top of the cathode block. A reliable scenario describing both the mechanical and electrochemical behaviours of the Al4C3 layer is proposed. For different industrial graphitized cathode grades, a series of experiments were carried out in a bench-scale Hall-Héroult electrolysis cell and the Al4C3 layer formed on top of the cathode was characterized. Thereafter, the CALPHAD method was combined with density functional theory simulations to estimate the electrical and physical properties of Al4C3 together with the phase equilibria occurring at the interface between the carbide layer and the aluminium pad and the cathode blocks respectively. From these calculations, a scenario for carbide layer growth and mechanical stability was established.
更新日期:2020-01-14

 

全部期刊列表>>
化学/材料学中国作者研究精选
ACS材料视界
南京大学
自然科研论文编辑服务
剑桥大学-
中国科学院大学化学科学学院
南开大学化学院周其林
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug