当前位置: X-MOL 学术Phys. Rev. E › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Quasistatic and quantum-adiabatic Otto engine for a two-dimensional material: The case of a graphene quantum dot.
Physical Review E ( IF 2.4 ) Pub Date : 2020-01-01 , DOI: 10.1103/physreve.101.012116
Francisco J Peña 1 , D Zambrano 1 , O Negrete 1, 2 , Gabriele De Chiara 3 , P A Orellana 1 , P Vargas 1, 2
Affiliation  

In this work, we study the performance of a quasistatic and quantum-adiabatic magnetic Otto cycles with a working substance composed of a single graphene quantum dot modeled by the continuum approach with the use of the zigzag boundary condition. Modulating an external or perpendicular magnetic field, in the quasistatic approach, we found a constant behavior in the total work extracted that is not present in the quantum-adiabatic formulation. We find that, in the quasistatic approach, the engine yielded a greater performance in terms of total work extracted and efficiency as compared with its quantum-adiabatic counterpart. In the quasistatic case, this is due to the working substance being in thermal equilibrium at each point of the cycle, maximizing the energy extracted in the adiabatic strokes.

中文翻译:

用于二维材料的准静态和量子绝热Otto引擎:石墨烯量子点的情况。

在这项工作中,我们研究了准静态和量子绝热Otto循环的性能,其工作物质由单一石墨烯量子点组成,该单一石墨烯量子点通过曲折边界条件使用连续介质方法建模。在准静态方法中,调制外部磁场或垂直磁场,我们发现提取的总功中具有恒定的行为,而量子绝热公式中不存在这种行为。我们发现,在准静态方法中,与提取的量子绝热相比,该引擎在提取的总功和效率方面表现出更高的性能。在准静态情况下,这是由于工作物质在循环的每个点处于热平衡状态,从而使绝热冲程中提取的能量最大化。
更新日期:2020-01-14
down
wechat
bug