当前位置: X-MOL 学术Phys. Rev. Lett. › 论文详情
Conditional quantum one-time pad
Physical Review Letters ( IF 9.227 ) Pub Date : 
Kunal Sharma, Eyuri Wakakuwa, and Mark M. Wilde

Suppose that Alice and Bob are located in distant laboratories, which are connected by an ideal quantum channel. Suppose further that they share many copies of a quantum state ρABE, such that Alice possesses the A systems and Bob the BE systems. In our model, there is an identifiable part of Bob’s laboratory that is insecure: a third party named Eve has infiltrated Bob’s laboratory and gained control of the E systems. Alice, knowing this, would like use their shared state and the ideal quantum channel to communicate a message in such a way that Bob, who has access to the whole of his laboratory (BE systems), can decode it, while Eve, who has access only to a sector of Bob’s laboratory (E systems) and the ideal quantum channel connecting Alice to Bob, cannot learn anything about Alice’s transmitted message. We call this task the conditional one-time pad, and in this paper, we prove that the optimal rate of secret communication for this task is equal to the conditional quantum mutual information I(A;B|E) of their shared state. We thus give the conditional quantum mutual information an operational meaning that is different from those given in prior works, via state redistribution, conditional erasure, or state deconstruction. We also generalize the model and method in several ways, one of which is a secret-sharing task, i.e., the case in which Alice’s message should be secure from someone possessing only the AB or AE systems but should be decodable by someone possessing all systems A, B, and E.
更新日期:2020-01-14

 

全部期刊列表>>
限时免费阅读临床医学内容
ACS材料视界
科学报告最新纳米科学与技术研究
清华大学化学系段昊泓
自然科研论文编辑服务
中国科学院大学楚甲祥
中国科学院微生物研究所潘国辉
中国科学院化学研究所
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug