当前位置: X-MOL 学术Mol. Ther. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Treatment of a Mouse Model of ALS by In Vivo Base Editing.
Molecular Therapy ( IF 12.4 ) Pub Date : 2020-01-14 , DOI: 10.1016/j.ymthe.2020.01.005
Colin K W Lim 1 , Michael Gapinske 1 , Alexandra K Brooks 1 , Wendy S Woods 1 , Jackson E Powell 1 , M Alejandra Zeballos C 1 , Jackson Winter 1 , Pablo Perez-Pinera 2 , Thomas Gaj 3
Affiliation  

Amyotrophic lateral sclerosis (ALS) is a debilitating and fatal disorder that can be caused by mutations in the superoxide dismutase 1 (SOD1) gene. Although ALS is currently incurable, CRISPR base editors hold the potential to treat the disease through their ability to create nonsense mutations that can permanently disable the expression of the mutant SOD1 gene. However, the restrictive carrying capacity of adeno-associated virus (AAV) vectors has limited their therapeutic application. In this study, we establish an intein-mediated trans-splicing system that enables in vivo delivery of cytidine base editors (CBEs) consisting of the widely used Cas9 protein from Streptococcus pyogenes. We show that intrathecal injection of dual AAV particles encoding a split-intein CBE engineered to trans-splice and introduce a nonsense-coding substitution into a mutant SOD1 gene prolonged survival and markedly slowed the progression of disease in the G93A-SOD1 mouse model of ALS. Adult animals treated by this split-intein CRISPR base editor had a reduced rate of muscle atrophy, decreased muscle denervation, improved neuromuscular function, and up to 40% fewer SOD1 immunoreactive inclusions at end-stage mice compared to control mice. This work expands the capabilities of single-base editors and demonstrates their potential for gene therapy.

中文翻译:

通过体内碱基编辑治疗ALS的小鼠模型。

肌萎缩性侧索硬化症(ALS)是一种衰弱和致命的疾病,可能由超氧化物歧化酶1(SOD1)基因的突变引起。尽管目前ALS是无法治愈的,但CRISPR基础编辑器具有创造无意义突变的能力,可治疗这种疾病,该突变可永久禁用突变SOD1基因的表达。然而,腺伴随病毒(AAV)载体的限制性携带能力限制了其治疗应用。在这项研究中,我们建立了一个intein介导的反式剪接系统,该系统可实现由化脓性链球菌广泛使用的Cas9蛋白组成的胞苷碱基编辑器(CBE)的体内递送。我们显示鞘内注射双AAV颗粒编码的分裂素CBE工程化以进行反剪接并将无义编码取代引入突变的SOD1基因延长了生存期,并显着减慢了G93A-SOD1小鼠模型的疾病进程。与对照小鼠相比,使用这种分裂蛋白质CRISPR基础编辑器处理的成年动物肌肉萎缩率降低,肌肉神经支配减少,神经肌肉功能得到改善,并且末期小鼠的SOD1免疫反应性内含物最多减少40%。这项工作扩展了单碱基编辑器的功能,并展示了其在基因治疗中的潜力。与对照小鼠相比,使用这种分裂蛋白质CRISPR基础编辑器处理的成年动物肌肉萎缩率降低,肌肉神经支配减少,神经肌肉功能得到改善,并且末期小鼠的SOD1免疫反应性内含物最多减少40%。这项工作扩展了单碱基编辑器的功能,并展示了其在基因治疗中的潜力。与对照小鼠相比,使用这种分裂蛋白质CRISPR基础编辑器处理的成年动物肌肉萎缩率降低,肌肉神经支配减少,神经肌肉功能得到改善,并且末期小鼠的SOD1免疫反应性内含物最多减少40%。这项工作扩展了单碱基编辑器的功能,并展示了其在基因治疗中的潜力。
更新日期:2020-01-14
down
wechat
bug