当前位置: X-MOL 学术NMR Biomed. › 论文详情
Longitudinal assessment of recovery after spinal cord injury with behavioral measures and diffusion, quantitative magnetization transfer and functional magnetic resonance imaging.
NMR in Biomedicine ( IF 3.414 ) Pub Date : 2020-01-13 , DOI: 10.1002/nbm.4216
Tung-Lin Wu,Nellie E Byun,Feng Wang,Arabinda Mishra,Vaibhav A Janve,Li Min Chen,John C Gore

Spinal cord injuries (SCIs) are a leading cause of disability and can severely impact the quality of life. However, to date, the processes of spontaneous repair of damaged spinal cord remain incompletely understood, partly due to a lack of appropriate longitudinal tracking methods. Noninvasive, multiparametric magnetic resonance imaging (MRI) provides potential biomarkers for the comprehensive evaluation of spontaneous repair after SCI. In this study in rats, a clinically relevant contusion injury was introduced at the lumbar level that impairs both hindlimb motor and sensory functions. Quantitative MRI measurements were acquired at baseline and serially post-SCI for up to 2 wk. The progressions of injury and spontaneous recovery in both white and gray matter were tracked longitudinally using pool-size ratio (PSR) measurements derived from quantitative magnetization transfer (qMT) methods, measurements of water diffusion parameters using diffusion tensor imaging (DTI) and intrasegment functional connectivity derived from resting state functional MRI. Changes in these quantitative imaging measurements were correlated with behavioral readouts. We found (a) a progressive decrease in PSR values within 2 wk post-SCI, indicating a progressive demyelination at the center of the injury that was validated with histological staining, (b) PSR correlated closely with fractional anisotropy and transverse relaxation of free water, but did not show significant correlations with behavioral recovery, and (c) preliminary evidence that SCI induced a decrease in functional connectivity between dorsal horns below the injury site at 24 h. Findings from this study not only confirm the value of qMT and DTI methods for assessing the myelination state of injured spinal cord but indicate that they may also have further implications on whether therapies targeted towards remyelination may be appropriate. Additionally, a better understanding of changes after SCI provides valuable information to guide and assess interventions.
更新日期:2020-03-09

 

全部期刊列表>>
聚焦商业经济政治法律
智控未来
控制与机器人
化学研究精选
欢迎探索2019年最具下载量的地球科学论文
招募海内外科研人才,上自然官网
基因组学对精准公共卫生的影响,专辑征稿
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
李旸
大连化物所
香港大学
X-MOL
支志明
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug