当前位置: X-MOL 学术Adv. Energy Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Efficient Hybrid Tandem Solar Cells Based on Optical Reinforcement of Colloidal Quantum Dots with Organic Bulk Heterojunctions
Advanced Energy Materials ( IF 27.8 ) Pub Date : 2020-01-13 , DOI: 10.1002/aenm.201903294
Havid Aqoma 1 , Imil Fadli Imran 2 , Muhibullah Al Mubarok 1 , Wisnu Tantyo Hadmojo 2 , Young Rag Do 2 , Sung‐Yeon Jang 1
Affiliation  

While colloidal quantum dot photovoltaic devices (CQDPVs) can achieve a power conversion efficiency (PCE) of ≈12%, their insufficient optical absorption in the near‐infrared (NIR) regime impairs efficient utilization of the full spectrum of visible light. Here, high‐efficiency, solution‐processed, hybrid series, tandem photovoltaic devices are developed featuring CQDs and organic bulk heterojunction (BHJ) photoactive materials for front‐ and back‐cells, respectively. The organic BHJ back‐cell efficiently harvests the transmitted NIR photons from the CQD front‐cell, which reinforces the photon‐to‐current conversion at 350–1000 nm wavelengths. Optimizing the short‐circuit current density balance of each sub‐cell and creating a near ideal series connection using an intermediate layer achieve a PCE (12.82%) that is superior to that of each single‐junction device (11.17% and 11.02% for the CQD and organic BHJ device, respectively). Notably, the PCE of the hybrid tandem device is the highest among the reported CQDPVs, including single‐junction devices and tandem devices. The hybrid tandem device also exhibits almost negligible degradation after air storage for 3 months. This study suggests a potential route to improve the performance of CQDPVs by proper hybridization with NIR‐absorbing photoactive materials.

中文翻译:

基于有机本体异质结胶体量子点光增强的高效混合串联太阳能电池

胶体量子点光伏器件(CQDPV)可以实现≈12%的功率转换效率(PCE),但它们在近红外(NIR)态下的光吸收不足会损害对可见光全光谱的有效利用。在这里,开发了分别用于前电池和后电池的具有CQD和有机体异质结(BHJ)光敏材料的高效,溶液处理,混合串联串联光伏器件。有机BHJ后池可有效收集CQD前池传输的近红外光子,从而增强了350-1000 nm波长的光子至电流的转换。优化每个子电池的短路电流密度平衡并使用中间层创建接近理想的串联连接可实现PCE(12。82%)优于每个单结器件(CQD和有机BHJ器件分别为11.17%和11.02%)。值得注意的是,在报告的CQDPV中,混合串联设备的PCE最高,包括单结设备和串联设备。混合串联装置在空气存储3个月后的降解几乎可以忽略不计。这项研究提出了通过与吸收NIR的光敏材料适当杂交来改善CQDPV性能的潜在途径。
更新日期:2020-02-18
down
wechat
bug