当前位置: X-MOL 学术Appl. Phys. A › 论文详情
Comparative study on the physical properties of rare-earth-substituted nano-sized CoFe 2 O 4
Applied Physics A ( IF 1.784 ) Pub Date : 2020-01-13 , DOI: 10.1007/s00339-020-3282-5
Ebtesam E. Ateia, M. K. Abdelmaksoud, M. M. Arman, Amira S. Shafaay

Nanotechnology manufacturing is rapidly developing and promises that the essential changes will have significant commercial and scientific impacts be applicable in an extensive range of areas. In this area, cobalt ferrite nanoparticles have been considered as one of the competitive candidates. The present study is based on the investigation of the effect of rare-earth (RE) incorporation on the physical properties of CoFe2O4. Rare-earth ions doped cobalt ferrites with composition CoRE0.025Fe1.975O4 where RE are Ce, Er and Sm have been synthesized by citrate auto combustion technique. Characterization is achieved using X-Ray diffraction (XRD) technique for structural analysis. The obtained data show that the samples exhibit a single-phase spinel structure. RE is successfully substituted into the spinel lattice without any distortion and it acts as inhibiting agent for grain growth. Room temperature M–H curves exhibit ferrimagnetism behavior with a decrease in saturation magnetization and coercivity indicating these materials can be applicable for magnetic data storage and magneto-recording devices. The electrical conductivity is studied as a function of frequency in the temperature range of 300–700 K. The conduction mechanism is attributed to the hopping mechanism. The Seebeck coefficient S is found to be positive for Ce indicating that Co/Ce ferrite behaves as a p-type semiconductor. While it is fluctuated between positive and negative for Er/Sm-doped samples throughout the studied temperature range. The cobalt doped with Er3+ and Sm3+ exhibits degenerated semiconductor trends at higher temperatures. Such data offer a new opportunity for optimizing and improving the performance of cobalt ferrite where the physical properties are decisive.
更新日期:2020-01-13

 

全部期刊列表>>
化学/材料学中国作者研究精选
Springer Nature 2019高下载量文章和章节
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中国科学院大学化学科学学院
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug