当前位置: X-MOL 学术Energy Storage Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dual-functional interfaces for highly stable Ni-rich layered cathodes in sulfide all-solid-state batteries
Energy Storage Materials ( IF 20.4 ) Pub Date : 2020-01-13 , DOI: 10.1016/j.ensm.2020.01.009
Sixu Deng , Xia Li , Zhouhong Ren , Weihan Li , Jing Luo , Jianwen Liang , Jianneng Liang , Mohammad Norouzi Banis , Minsi Li , Yang Zhao , Xiaona Li , Changhong Wang , Yipeng Sun , Qian Sun , Ruying Li , Yongfeng Hu , Huan Huang , Li Zhang , Shigang Lu , Jun Luo , Xueliang Sun

All-solid-state lithium-ion batteries (ASSLIBs) are expected as safe and high-performance alternatives to replace the conventional liquid-based lithium-ion batteries. However, the incompatible interface between the most cathode materials and sulfide-based solid electrolytes is still challenging the stable delivery of electrochemical performance for ASSLIBs. Herein, a dual-functional Li3PO4 (LPO) modification is designed for Ni-rich layered oxide cathodes in sulfide-based ASSLIBs to realize the high performance. The modified cathode demonstrates a significantly improved initial capacity of 170.6 mAh g-1 at 0.1C, better rate capability, and reduced polarization compared to the bare cathode. More importantly, a stable long-term cycling is achieved with a low capacity degradation rate of 0.22 mAh g-1 per cycle for 300 cycles at 0.2C. The detailed surface chemical and structural evolutions are studied via X-ray absorption near edge spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy. The results indicate that the LPO modification not only significantly suppresses the side-reactions with sulfide electrolyte but also helps to alleviate the deterioration of the microstructural cracks during the electrochemical reactions. This work provides an ideal and controllable interfacial design for realizing high performance sulfide-based ASSLIBs, which is readily applicable to other solid-state battery systems.



中文翻译:

双功能界面,用于硫化全固态电池中高度稳定的富镍层状阴极

全固态锂离子电池(ASSLIB)有望替代传统的液基锂离子电池,成为安全,高性能的替代产品。但是,大多数阴极材料和基于硫化物的固体电解质之间不兼容的界面仍在挑战ASSLIBs电化学性能的稳定传递。本文中,针对硫化物基ASSLIBs中的富镍层状氧化物阴极设计了双功能Li 3 PO 4(LPO)改性,以实现高性能。修饰的阴极显示出170.6 mAh g -1的显着改善的初始容量与裸露的阴极相比,在0.1C的温度下,具有更高的倍率能力并减少了极化。更重要的是,以0.22 mAh g -1的低容量降解率实现了稳定的长期循环每个循环在0.2C下进行300次循环。详细的表面化学和结构演变是通过近边缘光谱的X射线吸收,X射线光电子能谱和透射电子显微镜研究的。结果表明,LPO改性不仅显着抑制了与硫化物电解质的副反应,而且还有助于减轻电化学反应过程中微观结构裂纹的恶化。这项工作为实现高性能的基于硫化物的ASSLIB提供了理想且可控的界面设计,该界面很容易适用于其他固态电池系统。

更新日期:2020-01-13
down
wechat
bug