当前位置: X-MOL 学术Sol. Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Device simulation of 17.3% efficient lead-free all-perovskite tandem solar cell
Solar Energy ( IF 6.7 ) Pub Date : 2020-02-01 , DOI: 10.1016/j.solener.2020.01.006
Jaya Madan , Shivani , Rahul Pandey , Rajnish Sharma

Abstract Present research paper brings forth the results of simulation-based studies carried out on all-perovskite tandem (both top and bottom subcells made up of perovskites) multijunction devices. The all-perovskite tandem structure presented in this work employs a wide bandgap perovskite, i.e., Cs2AgBi0.75Sb0.25Br6 (1.8 eV) and a narrow bandgap perovskite, i.e., FACsPb0.5Sn0.5I3 (1.2 eV) as top and bottom cell respectively. An additional merit of the reported work is projection of lead (Pb)-free perovskite, Cs2AgBi0.75Sb0.25Br6 and low Pb content-based perovskite, FACsPb0.5Sn0.5I3 based tandem solar cell. The viability of proposed tandem design is performed in two steps firstly, 1.8 eV perovskite-based top cell is simulated and calibrated to fit the state-of-the-art conversion efficiency of 10.1%, and then, 1.2 eV perovskite-based bottom cell is simulated to have a calibrated efficiency of 14.2%. After calibrating the standalone (top and bottom) subcells, both the devices are evaluated for tandem configuration. The current matching conditions between the top and bottom cell is obtained at different thicknesses of the absorber layer in both top and bottom subcell. The optimized thickness for perovskite, 380 nm for top cell and 400 nm for bottom cell are obtained for tandem configuration. Top and bottom cells (fed with the filtered spectrum) reflect the conversion efficiency of 10.01% and 7.36%, respectively. Overall, tandem design showed a conversion efficiency of 17.3% owing to an enhancement in open-circuit voltage (VOC), which is 1.83 V.

中文翻译:

效率为 17.3% 的无铅全钙钛矿串联太阳能电池的器件模拟

摘要 本研究论文提出了对全钙钛矿串联(顶部和底部子电池均由钙钛矿组成)多结器件进行的基于模拟的研究结果。这项工作中提出的全钙钛矿串联结构采用宽带隙钙钛矿,即 Cs2AgBi0.75Sb0.25Br6 (1.8 eV) 和窄带隙钙钛矿,即 FACsPb0.5Sn0.5I3 (1.2 eV) 作为顶部和底部电池. 所报告工作的另一个优点是预测无铅 (Pb) 钙钛矿 Cs2AgBi0.75Sb0.25Br6 和基于低铅含量的钙钛矿 FACsPb0.5Sn0.5I3 串联太阳能电池。所提出的串联设计的可行性首先分两步进行,模拟和校准基于 1.8 eV 钙钛矿的顶部电池以适应 10.1% 的最新转换效率,然后是 1. 模拟 2 eV 钙钛矿基底部电池的校准效率为 14.2%。校准独立(顶部和底部)子单元后,将评估两个设备的串联配置。顶部和底部电池之间的电流匹配条件是在顶部和底部子电池中吸收层的不同厚度下获得的。钙钛矿的优化厚度,顶部电池为 380 nm,底部电池为 400 nm,用于串联配置。顶部和底部电池(用过滤光谱馈送)分别反映了 10.01% 和 7.36% 的转换效率。总体而言,由于开路电压 (VOC) 为 1.83 V,串联设计的转换效率为 17.3%。两个设备都针对串联配置进行了评估。顶部和底部电池之间的电流匹配条件是在顶部和底部子电池中吸收层的不同厚度下获得的。钙钛矿的优化厚度,顶部电池为 380 nm,底部电池为 400 nm,用于串联配置。顶部和底部电池(用过滤光谱馈送)分别反映了 10.01% 和 7.36% 的转换效率。总体而言,由于开路电压 (VOC) 为 1.83 V,串联设计的转换效率为 17.3%。两个设备都针对串联配置进行了评估。顶部和底部电池之间的电流匹配条件是在顶部和底部子电池中吸收层的不同厚度下获得的。钙钛矿的优化厚度,顶部电池为 380 nm,底部电池为 400 nm,用于串联配置。顶部和底部电池(用过滤光谱馈送)分别反映了 10.01% 和 7.36% 的转换效率。总体而言,由于开路电压 (VOC) 为 1.83 V,串联设计的转换效率为 17.3%。对于串联配置,顶部电池为 380 nm,底部电池为 400 nm。顶部和底部电池(用过滤光谱馈送)分别反映了 10.01% 和 7.36% 的转换效率。总体而言,由于开路电压 (VOC) 为 1.83 V,串联设计的转换效率为 17.3%。对于串联配置,顶部电池为 380 nm,底部电池为 400 nm。顶部和底部电池(用过滤光谱馈送)分别反映了 10.01% 和 7.36% 的转换效率。总体而言,由于开路电压 (VOC) 为 1.83 V,串联设计的转换效率为 17.3%。
更新日期:2020-02-01
down
wechat
bug