当前位置: X-MOL 学术IEEE Trans. Signal Process. › 论文详情
A Spatial–Temporal Subspace-Based Compressive Channel Estimation Technique in Unknown Interference MIMO Channels
IEEE Transactions on Signal Processing ( IF 5.028 ) Pub Date : 2019-12-11 , DOI: 10.1109/tsp.2019.2959223
Yasuhiro Takano; Hsuan-Jung Su; Yoshiaki Shiraishi; Masakatu Morii

Spatial-temporal (ST) subspace-based channel estimation techniques formulated with ℓ2 minimum mean square error (MMSE) criterion alleviate the multi-access interference (MAI) problem when the interested signals exhibit low-rank property. However, the conventional B2ST subspace-based methods suffer from mean squared error (MSE) deterioration in unknown interference channels, due to the difficulty to separate the interested signals from the channel covariance matrices (CCMs) contaminated with unknown interference. As a solution to the problem, we propose a new ℓ1 regularized ST channel estimation algorithm by applying the expectation-maximization (EM) algorithm to iteratively examine the signal subspace and the corresponding sparse-supports. The new algorithm updates the CCM independently of the slot-dependent ℓ1 regularization, which enables it to correctly perform the sparse-independent component analysis (ICA) with a reasonable complexity order. Simulation results shown in this paper verify that the proposed technique significantly improves MSE performance in unknown interference MIMO channels, and hence, solves the BER floor problems from which the conventional receivers suffer.
更新日期:2020-04-22

 

全部期刊列表>>
材料学研究精选
Springer Nature Live 产业与创新线上学术论坛
胸腔和胸部成像专题
自然科研论文编辑服务
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
杨超勇
周一歌
华东师范大学
南京工业大学
清华大学
中科大
唐勇
跟Nature、Science文章学绘图
隐藏1h前已浏览文章
中洪博元
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
福州大学
南京大学
王杰
左智伟
湖南大学
清华大学
吴杰
赵延川
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug