当前位置: X-MOL 学术IEEE Trans. Signal Process. › 论文详情
A Spatial–Temporal Subspace-Based Compressive Channel Estimation Technique in Unknown Interference MIMO Channels
IEEE Transactions on Signal Processing ( IF 5.230 ) Pub Date : 2019-12-11 , DOI: 10.1109/tsp.2019.2959223
Yasuhiro Takano; Hsuan-Jung Su; Yoshiaki Shiraishi; Masakatu Morii

Spatial–temporal (ST) subspace-based channel estimation techniques formulated with $\ell 2$ minimum mean square error (MMSE) criterion alleviate the multi-access interference (MAI) problem when the interested signals exhibit low-rank property. However, the conventional $\ell 2$ ST subspace-based methods suffer from mean squared error (MSE) deterioration in unknown interference channels, due to the difficulty to separate the interested signals from the channel covariance matrices (CCMs) contaminated with unknown interference. As a solution to the problem, we propose a new $\ell 1$ regularized ST channel estimation algorithm by applying the expectation-maximization (EM) algorithm to iteratively examine the signal subspace and the corresponding sparse-supports. The new algorithm updates the CCM independently of the slot-dependent $\ell 1$ regularization, which enables it to correctly perform the sparse-independent component analysis (ICA) with a reasonable complexity order. Simulation results shown in this paper verify that the proposed technique significantly improves MSE performance in unknown interference MIMO channels, and hence, solves the BER floor problems from which the conventional receivers suffer.
更新日期:2020-01-10

 

全部期刊列表>>
2020新春特辑
限时免费阅读临床医学内容
ACS材料视界
科学报告最新纳米科学与技术研究
清华大学化学系段昊泓
自然科研论文编辑服务
中国科学院大学楚甲祥
上海纽约大学William Glover
中国科学院化学研究所
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug