当前位置: X-MOL 学术IEEE Trans. Signal Process. › 论文详情
Nonlinear Filtering With Variable Bandwidth Exponential Kernels
IEEE Transactions on Signal Processing ( IF 5.028 ) Pub Date : 2019-12-13 , DOI: 10.1109/tsp.2019.2959190
Maja Taseska; Toon van Waterschoot; Emanuël A. P. Habets; Ronen Talmon

Frameworks for efficient and accurate data processing often rely on a suitable representation of measurements that capture phenomena of interest. Typically, such representations are high-dimensional vectors obtained by a transformation of raw sensor signals such as time-frequency transform, lag-map, etc. In this work, we focus on representation learning approaches that consider the measurements as the nodes of a weighted graph, with edge weights computed by a given kernel. If the kernel is chosen properly, the eigenvectors of the resulting graph affinity matrix provide suitable representation coordinates for the measurements. Consequently, tasks such as regression, classification, and filtering, can be done more efficiently than in the original domain of the data. In this paper, we address the problem of representation learning from measurements, which besides the phenomenon of interest contain undesired sources of variability. We propose data-driven kernels to learn representations that accurately parametrize the phenomenon of interest, while reducing variations due to other sources of variability. This is a non-linear filtering problem, which we approach under the assumption that certain geometric information about the undesired variables can be extracted from the measurements, e.g., using an auxiliary sensor. The applicability of the proposed kernels is demonstrated in toy problems and in a real signal processing task.
更新日期:2020-04-22

 

全部期刊列表>>
AI核心技术
10years
材料学研究精选
Springer Nature Live 产业与创新线上学术论坛
胸腔和胸部成像专题
自然科研论文编辑服务
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
杨超勇
周一歌
华东师范大学
段炼
清华大学
廖矿标
李远
跟Nature、Science文章学绘图
隐藏1h前已浏览文章
中洪博元
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
福州大学
南京大学
王杰
左智伟
电子显微学
何凤
洛杉矶分校
吴杰
赵延川
试剂库存
天合科研
down
wechat
bug