当前位置: X-MOL 学术IEEE Trans. Signal Process. › 论文详情
Nonlinear Filtering With Variable Bandwidth Exponential Kernels
IEEE Transactions on Signal Processing ( IF 5.230 ) Pub Date : 2019-12-13 , DOI: 10.1109/tsp.2019.2959190
Maja Taseska; Toon van Waterschoot; Emanuël A. P. Habets; Ronen Talmon

Frameworks for efficient and accurate data processing often rely on a suitable representation of measurements that capture phenomena of interest. Typically, such representations are high-dimensional vectors obtained by a transformation of raw sensor signals such as time-frequency transform, lag-map, etc. In this work, we focus on representation learning approaches that consider the measurements as the nodes of a weighted graph, with edge weights computed by a given kernel . If the kernel is chosen properly, the eigenvectors of the resulting graph affinity matrix provide suitable representation coordinates for the measurements. Consequently, tasks such as regression, classification, and filtering, can be done more efficiently than in the original domain of the data. In this paper, we address the problem of representation learning from measurements, which besides the phenomenon of interest contain undesired sources of variability. We propose data-driven kernels to learn representations that accurately parametrize the phenomenon of interest, while reducing variations due to other sources of variability. This is a non-linear filtering problem, which we approach under the assumption that certain geometric information about the undesired variables can be extracted from the measurements, e.g., using an auxiliary sensor. The applicability of the proposed kernels is demonstrated in toy problems and in a real signal processing task.
更新日期:2020-01-10

 

全部期刊列表>>
2020新春特辑
限时免费阅读临床医学内容
ACS材料视界
科学报告最新纳米科学与技术研究
清华大学化学系段昊泓
自然科研论文编辑服务
加州大学洛杉矶分校
上海纽约大学William Glover
南开大学化学院周其林
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug