当前位置: X-MOL 学术Transp Porous Media › 论文详情
Development and Validation of a New Model for In Situ Foam Generation Using Foamer Droplets Injection
Transport in Porous Media ( IF 2.376 ) Pub Date : 2018-10-03 , DOI: 10.1007/s11242-018-1156-5
Juan D. Valencia; Alonso Ocampo; Juan M. Mejía

Foam generation and transport in porous media are a proven method to improve the sweep efficiency of a flooding fluid in enhanced oil recovery process and increase the effectiveness of a treatment fluid in well intervention procedures. Foam in the porous media is often generated using surfactant alternating gas or co-injection. Although these operations result in good incremental production, the profit losses could be high due to surfactant retention and lack of water injection facilities in the target fields. One way of reducing foam generation operations expenses is by injecting the surfactant solution disperse throughout the gas phase in a process called “disperse foam.” Core-flooding experimental results have shown that disperse foam techniques reduce the surfactant retention and increase cumulative oil production. This increase means that not only the foam is being generated but also it is blocking the high mobility channels and enhancing the sweep efficiency. Additionally, the operational implementation in field operations is very simple and reduces significantly operational costs of the process. Because few laboratory core-flooding tests and field pilots have been executed using the disperse foam technique, there is a high level of uncertainty associated with the method. Besides, the models reported in the literature do not account for all the associated phenomena, including the surfactant droplets transfer between the gas and liquid phases, and the lamellae stability at low water saturation. For this reason, the development of a mechanistic disperse foam model is key to understand the phenomena associated with “disperse foam” operations. In this work, we use a previous foam mechanistic model to develop a disperse foam model that includes the physicochemical mechanisms of the foaming process a core scale. The model accounts for the foamer mass transference between the gas and liquid phases in a non-equilibrium state with a particle interception model, also accounts for the reversible and irreversible surfactant adsorption on the rock surface in dynamic conditions with a first-order kinetic model, and includes foam generation, coalescence and, transport using a population balance mechanistic model.
更新日期:2018-10-03

 

全部期刊列表>>
chemistry
物理学研究前沿热点精选期刊推荐
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
ACS Publications填问卷
屿渡论文,编辑服务
阿拉丁试剂right
南昌大学
王辉
南方科技大学
彭小水
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
赵延川
李霄羽
廖矿标
朱守非
试剂库存
down
wechat
bug