当前位置: X-MOL 学术Transp Porous Media › 论文详情
A Pore Scale Study of Non-Newtonian Effect on Foam Propagation in Porous Media
Transport in Porous Media ( IF 2.376 ) Pub Date : 2018-09-22 , DOI: 10.1007/s11242-018-1159-2
Galang B. Ramadhan; Quoc P. Nguyen

CO2 injection is one of the most promising techniques to enhance oil recovery. However, an unfavorable mobility ratio, reservoir heterogeneity and gravity segregation can reduce the macroscopic sweep efficiency. In situ foaming of injected CO2 is the method that has the most potential for improving sweep efficiency based on controlling CO2 mobility. This study investigates the foaming behavior of N,N,N′-trimethyl-N′-tallow-1,3-diaminopropane (DTTM) surfactant with CO2 in a transparent porous microflow model with natural rock pore structures. It focuses on the effect of the salinity induced non-Newtonian behavior of DTTM solution on foam propagation. The performance of foams stabilized by 0.5 wt% DTTM solution over the viscosity range from 0.71 (at 5 wt% NaCl) to 41 cp (at 20 wt% NaCl) was compared with conventional polymer-enhanced foams whose liquid phase contained a commonly used foaming surfactant, C15–18 Internal Olefin Sulfonate (C15–18 IOS) and a hydrolyzed polyacrylamide. Such comparisons have also provided insight into the respective impacts of liquid phase viscosification by worm-like surfactant micelles and polymer on foam texture associated with its rheological characteristics. It was found that at low aqueous phase viscosity (injection liquid viscosity of 0.71 cp) the maximum achievable viscosity of DDTM foam was around 1000 cp, which was 80 times IOS stabilized foam. The interfacial tension of DTTM was higher than that of IOS, resulting coarser foam texture and higher individual lamella resistance. An increase in DTTM solution viscosity by a factor of 33 decreased foam generation and viscosity for gas injection. This was not observed for the simultaneous injection of gas and DTTM solution. Overall, the effect of liquid phase viscosity on transient foam behavior during gas injection is similar for both DTTM and IOS regardless of the difference in the nature of viscosifying agents (WLM vs 3330 s polymer). An increase in gas injection pressure without liquid injection delayed foam propagation and reduced the magnitude of foam viscosity. The results from this study indicated that DTTM surfactant is an important alternative to commercially available polymers that have been used to enhance foam performance in porous media. This particular surfactant type also overcomes several disadvantages of polymers such as limited temperature and salinity tolerance, shear degradation, and filtering in low permeability formations.
更新日期:2018-09-22

 

全部期刊列表>>
物理学研究前沿热点精选期刊推荐
chemistry
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
ACS Publications填问卷
屿渡论文,编辑服务
阿拉丁试剂right
南昌大学
王辉
南方科技大学
彭小水
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
赵延川
李霄羽
廖矿标
朱守非
试剂库存
down
wechat
bug