当前位置: X-MOL 学术Transp Porous Media › 论文详情
A Pore Scale Study of Non-Newtonian Effect on Foam Propagation in Porous Media
Transport in Porous Media ( IF 1.997 ) Pub Date : 2018-09-22 , DOI: 10.1007/s11242-018-1159-2
Galang B. Ramadhan, Quoc P. Nguyen

Abstract CO2 injection is one of the most promising techniques to enhance oil recovery. However, an unfavorable mobility ratio, reservoir heterogeneity and gravity segregation can reduce the macroscopic sweep efficiency. In situ foaming of injected CO2 is the method that has the most potential for improving sweep efficiency based on controlling CO2 mobility. This study investigates the foaming behavior of N,N,N′-trimethyl-N′-tallow-1,3-diaminopropane (DTTM) surfactant with CO2 in a transparent porous microflow model with natural rock pore structures. It focuses on the effect of the salinity induced non-Newtonian behavior of DTTM solution on foam propagation. The performance of foams stabilized by 0.5 wt% DTTM solution over the viscosity range from 0.71 (at 5 wt% NaCl) to 41 cp (at 20 wt% NaCl) was compared with conventional polymer-enhanced foams whose liquid phase contained a commonly used foaming surfactant, C15–18 Internal Olefin Sulfonate (C15–18 IOS) and a hydrolyzed polyacrylamide. Such comparisons have also provided insight into the respective impacts of liquid phase viscosification by worm-like surfactant micelles and polymer on foam texture associated with its rheological characteristics. It was found that at low aqueous phase viscosity (injection liquid viscosity of 0.71 cp) the maximum achievable viscosity of DDTM foam was around 1000 cp, which was 80 times IOS stabilized foam. The interfacial tension of DTTM was higher than that of IOS, resulting coarser foam texture and higher individual lamella resistance. An increase in DTTM solution viscosity by a factor of 33 decreased foam generation and viscosity for gas injection. This was not observed for the simultaneous injection of gas and DTTM solution. Overall, the effect of liquid phase viscosity on transient foam behavior during gas injection is similar for both DTTM and IOS regardless of the difference in the nature of viscosifying agents (WLM vs 3330 s polymer). An increase in gas injection pressure without liquid injection delayed foam propagation and reduced the magnitude of foam viscosity. The results from this study indicated that DTTM surfactant is an important alternative to commercially available polymers that have been used to enhance foam performance in porous media. This particular surfactant type also overcomes several disadvantages of polymers such as limited temperature and salinity tolerance, shear degradation, and filtering in low permeability formations.
更新日期:2020-01-11

 

全部期刊列表>>
化学/材料学中国作者研究精选
Springer Nature 2019高下载量文章和章节
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中国科学院大学化学科学学院
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug