当前位置: X-MOL 学术Transp Porous Media › 论文详情
Calibrating and Scaling Semi-empirical Foam Flow Models for the Assessment of Foam-Based EOR Processes (in Heterogeneous Reservoirs)
Transport in Porous Media ( IF 1.997 ) Pub Date : 2019-01-17 , DOI: 10.1007/s11242-018-01223-5
O. Gassara, F. Douarche, B. Braconnier, B. Bourbiaux

Abstract Models for simulating foam-based displacements fall into two categories: population-balance (PB) models that derive explicitly foam texture or bubble size from pore-level mechanisms related to lamellas generation and coalescence, and steady-state semi-empirical (SE) models that account implicitly for foam texture effects through a gas mobility reduction factor. This mobility reduction factor has to be calibrated from a large number of experiments on a case-by-case basis in order to match the physical effect of parameters impacting foam flow behaviour such as fluids saturation and velocity. This paper proposes a methodology to set up steady-state SE models of foam flow on the basis of an equivalence between SE model and PB model under steady-state flow conditions. The underlying approach consists in linking foam mobility and foam lamellas density (or texture) data inferred from foam corefloods performed with different foam qualities and velocities on a series of sandstones of different permeabilities. Its advantages lie in a deterministic non-iterative transcription of flow measurements into texture data and in a separation of texture effects and shear-thinning (velocity) effects. Then, scaling of foam flow parameters with porous medium permeability is established from the analysis of calibrated foam model parameters on cores of different permeability, with the help of theoretical representations of foam flow in a confined medium. Although they remain to be further confirmed from other well-documented experimental data sets, the significance of those scaling laws is great for the assessment of foam-based enhanced oil recovery (EOR) processes because foam EOR addresses heterogeneous reservoirs. Simulations of foam displacement in a reservoir cross section demonstrate the necessity to scale foam SE models with respect to facies heterogeneity for reliable evaluation.
更新日期:2020-01-11

 

全部期刊列表>>
Springer Nature 2019高下载量文章和章节
化学/材料学中国作者研究精选
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中南大学
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug