当前位置: X-MOL 学术Adv. Math. › 论文详情
Beyond cohomological assignments
Advances in Mathematics ( IF 1.435 ) Pub Date : 2020-01-10 , DOI: 10.1016/j.aim.2020.106976
Victor Guillemin; Susan Tolman; Catalin Zara

Let a torus T act in a Hamiltonian fashion on a compact symplectic manifold (M,ω). The assignment ring AT(M) is an extension of the equivariant cohomology ring HT(M); it is modeled on the GKM description of the equivariant cohomology of a GKM space. We show that AT(M) is a finitely generated S(t⁎)-module, and give a criterion guaranteeing that a given set of assignments generates (alternatively, is a basis for) this module. We define two new types of assignments, delta classes and bridge classes, and show that if the torus T is 2-dimensional, then all assignments of sufficiently high degree are generated by cohomological, delta, and bridge classes. In particular, if M is 6-dimensional, then we can find a basis of such classes.
更新日期:2020-01-11

 

全部期刊列表>>
2020新春特辑
限时免费阅读临床医学内容
ACS材料视界
科学报告最新纳米科学与技术研究
清华大学化学系段昊泓
自然科研论文编辑服务
中国科学院大学楚甲祥
上海纽约大学William Glover
中国科学院化学研究所
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug