当前位置: X-MOL 学术Int. J. Refract. Met. Hard Mater. › 论文详情
Evaluation of the mechanical properties of WC-FeAl composite coating fabricated by laser cladding method
International Journal of Refractory Metals & Hard Materials ( IF 2.794 ) Pub Date : 2020-01-10 , DOI: 10.1016/j.ijrmhm.2020.105199
Alireza Mostajeran; Reza Shoja-Razavi; Morteza Hadi; Mohammad Erfanmanesh; Masoud Barekat; Mohammad Savaghebi Firouzabadi

WC-Co coating, which is a subcategory of Tungsten Carbide-based coatings, is prominent among a variety of industries. However, because of its expense, poisoning, and low corrosion resistance of Cobalt in acidic environments, alternative compositions have been designed. One of these alternatives is the Iron Aluminide intermetallic compound which can replace Cobalt. This study investigates laser cladding of WC-FeAl powder on a 321 Stainless-Steel substrate. WC-FeAl powders were synthesized by mechanical alloying of initial Aluminum and Iron powders, milled for 20 h, followed by an hour of annealing at 800 degrees Celsius. Then, the annealed particles were mechanically alloyed with WC powders for 50 h. The result of the X-ray diffraction (XRD) analysis showed that no brittle and destructive phase was formed during synthesis. Subsequently, powders were coated on the stainless-steel substrate by laser cladding method. Effect of the main parameters of the laser cladding, including laser power, laser probe velocity, and powder spray rate, on the coating properties, such as porosity, geometry, thickness and, dilution were studied. Results indicate that with a higher power of the laser, the penetration depth and the width of the coating increased. Besides, with a higher velocity of the laser probe, dilution and penetration depth decreased. Furthermore, the Higher rate of powder spray led to a thicker coating. The optimum parameters of different samples were 250 W power, 4 mm/s probe velocity, and 400 mg/s powder spray rate. Evaluation of the mechanical properties indicated that the 1600 Vickers hardness, 5.7 MPa.m1/2 fracture toughness, and 355 GPa Young's modulus were obtained. Besides, The evaluation of the mechanical properties of the coating showed that the hardness, fracture toughness, and elasticity modulus are 1600 V, 5.7 MPa.m1/2, and 355 GPa respectively. Obtained results revealed that in comparison with the WC-FeAl composite coating with 500 ppm additional Boron and WC-Co coating both fabricated by thermal spray coating, for the WC-FeAl coating studied in this investigation, respectively the hardness is 1.16 and 1.21 times higher and the fracture toughness is 2.5 and 2.8 times higher. As well, Young's modulus of the coating was 1.56 times higher than the WC-Co coating made by the laser cladding method.
更新日期:2020-01-11

 

全部期刊列表>>
化学/材料学中国作者研究精选
Springer Nature 2019高下载量文章和章节
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中国科学院大学化学科学学院
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug