当前位置: X-MOL 学术Opt. Commun. › 论文详情
Deep neural network method for channel estimation in visible light communication
Optics Communications ( IF 1.961 ) Pub Date : 2020-01-10 , DOI: 10.1016/j.optcom.2020.125272
Xi Wu; Zhitong Huang; Yuefeng Ji

Visible light communications (VLC) has been regarded as a promising technology for high-speed indoor wireless accessing since it can offer both lighting and network. However, the spectral efficiency of the VLC system based on orthogonal frequency division multiplexing (OFDM) is always smaller than RF-OFDM because light-emitting diodes (LED) require real-value signals. Pilots occupy the spectrum in proportion for channel estimation(CE) to improve communication quality. Based on this consideration, we firstly present the idea of introducing deep learning technology into the CE scheme in the VLC system and propose a CE scheme based on Deep Neural Networks(DNN) perform as well as conventional CE schemes with fewer pilots. The result of experiments validates the feasibility of DNN-based CE.
更新日期:2020-01-10

 

全部期刊列表>>
化学/材料学中国作者研究精选
Springer Nature 2019高下载量文章和章节
ACS材料视界
南京大学
自然科研论文编辑服务
剑桥大学-
中国科学院大学化学科学学院
南开大学化学院周其林
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug