当前位置: X-MOL 学术Opt. Commun. › 论文详情
Deep neural network method for channel estimation in visible light communication
Optics Communications ( IF 2.125 ) Pub Date : 2020-01-10 , DOI: 10.1016/j.optcom.2020.125272
Xi Wu, Zhitong Huang, Yuefeng Ji

Visible light communications (VLC) has been regarded as a promising technology for high-speed indoor wireless accessing since it can offer both lighting and network. However, the spectral efficiency of the VLC system based on orthogonal frequency division multiplexing (OFDM) is always smaller than RF-OFDM because light-emitting diodes (LED) require real-value signals. Pilots occupy the spectrum in proportion for channel estimation(CE) to improve communication quality. Based on this consideration, we firstly present the idea of introducing deep learning technology into the CE scheme in the VLC system and propose a CE scheme based on Deep Neural Networks(DNN) perform as well as conventional CE schemes with fewer pilots. The result of experiments validates the feasibility of DNN-based CE.

更新日期:2020-01-10

 

全部期刊列表>>
chemistry
物理学研究前沿热点精选期刊推荐
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
ACS Publications填问卷
屿渡论文,编辑服务
阿拉丁试剂right
南昌大学
王辉
南方科技大学
彭小水
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
赵延川
李霄羽
廖矿标
朱守非
试剂库存
down
wechat
bug