当前位置: X-MOL 学术arXiv.cs.DM › 论文详情
Independent Domination in Subcubic Graphs
arXiv - CS - Discrete Mathematics Pub Date : 2020-01-09 , DOI: arxiv-2001.02946
A. Akbari; S. Akbari; A. Doosthosseini; Z. Hadizadeh; Michael A. Henning; A. Naraghi

A set $S$ of vertices in a graph $G$ is a dominating set if every vertex not in $S$ is adjacent to a vertex in $S$. If, in addition, $S$ is an independent set, then $S$ is an independent dominating set. The independent domination number $i(G)$ of $G$ is the minimum cardinality of an independent dominating set in $G$. In 2013 Goddard and Henning [Discrete Math 313 (2013), 839--854] conjectured that if $G$ is a connected cubic graph of order $n$, then $i(G) \le \frac{3}{8}n$, except if $G$ is the complete bipartite graph $K_{3,3}$ or the $5$-prism $C_5 \, \Box \, K_2$. Further they construct two infinite families of connected cubic graphs with independent domination three-eighths their order. They remark that perhaps it is even true that for $n > 10$ these two families are only families for which equality holds. In this paper, we provide a new family of connected cubic graphs $G$ of order $n$ such that $i(G) = \frac{3}{8}n$. We also show that if $G$ is a subcubic graph of order $n$ with no isolated vertex, then $i(G) \le \frac{1}{2}n$, and we characterize the graphs achieving equality in this bound.
更新日期:2020-01-10

 

全部期刊列表>>
Springer Nature 2019高下载量文章和章节
化学/材料学中国作者研究精选
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中国科学院大学化学科学学院
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug