当前位置: X-MOL 学术arXiv.cs.DM › 论文详情
A Generalization of Teo and Sethuraman's Median Stable Marriage Theorem
arXiv - CS - Discrete Mathematics Pub Date : 2020-01-09 , DOI: arxiv-2001.03133
Vijay K. Garg

Let $L$ be any finite distributive lattice and $B$ be any boolean predicate defined on $L$ such that the set of elements satisfying $B$ is a sublattice of $L$. Consider any subset $M$ of $L$ of size $k$ of elements of $L$ that satisfy $B$. Then, we show that $k$ generalized median elements generated from $M$ also satisfy $B$. We call this result generalized median theorem on finite distributive lattices. When this result is applied to the stable matching, we get Teo and Sethuraman's median stable matching theorem. Our proof is much simpler than that of Teo and Sethuraman. When the generalized median theorem is applied to the assignment problem, we get an analogous result for market clearing price vectors.
更新日期:2020-01-10

 

全部期刊列表>>
Springer Nature 2019高下载量文章和章节
化学/材料学中国作者研究精选
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中国科学院大学化学科学学院
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug