当前位置: X-MOL 学术Appl. Phys. Lett. › 论文详情
High temperature (300 °C) ALD grown Al2O3on hydrogen terminated diamond: Band offset and electrical properties of the MOSFETs
Applied Physics Letters ( IF 3.521 ) Pub Date : 2020-01-02 , DOI: 10.1063/1.5126359
Zeyang Ren, Dandan Lv, Jiamin Xu, Jinfeng Zhang, Jincheng Zhang, Kai Su, Chunfu Zhang, Yue Hao

Hydrogen-terminated diamond (H-diamond) metal-oxide-semiconductor field effect transistors (MOSFETs) were fabricated on a polycrystalline diamond substrate. The device has a gate length of 2 μm and uses Al2O3 grown by atomic layer deposition at 300 °C as a gate dielectric and passivation layer. The Al2O3/H-diamond interfacial band configuration was investigated by X-ray photoelectron spectroscopy, and a large valence band offset (3.28 eV) that is very suitable for p-channel H-diamond FETs was observed. Meanwhile, the measured O/Al ratio hints that there are Oi or VAl defects in the Al2O3 dielectric, which can work as an acceptorlike transfer doping material on a H-diamond surface. The device delivers the maximum saturation drain current of over 200 mA/mm, which is the highest for 2-μm H-diamond MOSFETs with the gate dielectric or passivation layer grown at 300 °C or higher temperature. The ultrahigh on/off ratio of 1010 and ultralow gate leakage current of below 10−12 A have been achieved. The high device performance is ascribed to the ultrahigh carrier density, good interface characteristics, and device processes. In addition, the transient drain current response of the device can follow the gate voltage switching on/off pulse at a frequency from 100 kHz to 1 MHz, which indicates the potential of the H-diamond FETs in power switch applications.
更新日期:2020-01-10

 

全部期刊列表>>
化学/材料学中国作者研究精选
Springer Nature 2019高下载量文章和章节
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中国科学院大学化学科学学院
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug