当前位置: X-MOL 学术Wireless Networks › 论文详情
Prediction of time series using wavelet Gaussian process for wireless sensor networks
Wireless Networks ( IF 2.405 ) Pub Date : 2020-01-08 , DOI: 10.1007/s11276-020-02250-1
Jose Mejia, Alberto Ochoa-Zezzatti, Oliverio Cruz-Mejía, Boris Mederos

The detection and transmission of a physical variable over time, by a node of a sensor network to its sink node, represents a significant communication overload and consequently one of the main energy consumption processes. In this article we present an algorithm for the prediction of time series, with which it is expected to reduce the energy consumption of a sensor network, by reducing the number of transmissions when reporting to the sink node only when the prediction of the sensed value differs in certain magnitude, to the actual sensed value. For this end, the proposed algorithm combines a wavelet multiresolution transform with robust prediction using Gaussian process. The data is processed in wavelet domain, taking advantage of the transform ability to capture geometric information and decomposition in more simple signals or subbands. Subsequently, the decomposed signal is approximated by Gaussian process one for each subband of the wavelet, in this manner the Gaussian process is given to learn a much simple signal. Once the process is trained, it is ready to make predictions. We compare our method with pure Gaussian process prediction showing that the proposed method reduces the prediction error and is improves large horizons predictions, thus reducing the energy consumption of the sensor network.
更新日期:2020-01-09

 

全部期刊列表>>
2020新春特辑
限时免费阅读临床医学内容
ACS材料视界
科学报告最新纳米科学与技术研究
清华大学化学系段昊泓
自然科研论文编辑服务
中国科学院大学楚甲祥
中国科学院微生物研究所潘国辉
中国科学院化学研究所
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug