当前位置: X-MOL 学术Wireless Netw. › 论文详情
Prediction of time series using wavelet Gaussian process for wireless sensor networks
Wireless Networks ( IF 2.659 ) Pub Date : 2020-01-08 , DOI: 10.1007/s11276-020-02250-1
Jose Mejia, Alberto Ochoa-Zezzatti, Oliverio Cruz-Mejía, Boris Mederos

The detection and transmission of a physical variable over time, by a node of a sensor network to its sink node, represents a significant communication overload and consequently one of the main energy consumption processes. In this article we present an algorithm for the prediction of time series, with which it is expected to reduce the energy consumption of a sensor network, by reducing the number of transmissions when reporting to the sink node only when the prediction of the sensed value differs in certain magnitude, to the actual sensed value. For this end, the proposed algorithm combines a wavelet multiresolution transform with robust prediction using Gaussian process. The data is processed in wavelet domain, taking advantage of the transform ability to capture geometric information and decomposition in more simple signals or subbands. Subsequently, the decomposed signal is approximated by Gaussian process one for each subband of the wavelet, in this manner the Gaussian process is given to learn a much simple signal. Once the process is trained, it is ready to make predictions. We compare our method with pure Gaussian process prediction showing that the proposed method reduces the prediction error and is improves large horizons predictions, thus reducing the energy consumption of the sensor network.
更新日期:2020-01-09

 

全部期刊列表>>
欢迎访问IOP中国网站
自然职场线上招聘会
GIANT
产业、创新与基础设施
自然科研线上培训服务
材料学研究精选
胸腔和胸部成像专题
屿渡论文,编辑服务
何川
苏昭铭
陈刚
姜涛
李闯创
李刚
北大
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
上海纽约大学
陈芬儿
厦门大学
何振宇
史大永
吉林大学
卓春祥
张昊
杨中悦
试剂库存
down
wechat
bug