当前位置: X-MOL 学术Sci. Transl. Med. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
GDNF rescues the fate of neural progenitor grafts by attenuating Notch signals in the injured spinal cord in rodents.
Science Translational Medicine ( IF 17.1 ) Pub Date : 2020-01-08 , DOI: 10.1126/scitranslmed.aau3538
Mohamad Khazaei 1 , Christopher S Ahuja 1, 2 , Hiroaki Nakashima 1 , Narihito Nagoshi 1 , Lijun Li 1 , Jian Wang 1 , Jonathon Chio 1, 2 , Anna Badner 1, 2 , David Seligman 1 , Ayaka Ichise 3 , Shinsuke Shibata 3 , Michael G Fehlings 1, 2, 4, 5
Affiliation  

Neural progenitor cell (NPC) transplantation is a promising strategy for the treatment of spinal cord injury (SCI). In this study, we show that injury-induced Notch activation in the spinal cord microenvironment biases the fate of transplanted NPCs toward astrocytes in rodents. In a screen for potential clinically relevant factors to modulate Notch signaling, we identified glial cell-derived neurotrophic factor (GDNF). GDNF attenuates Notch signaling by mediating delta-like 1 homolog (DLK1) expression, which is independent of GDNF's effect on cell survival. When transplanted into a rodent model of cervical SCI, GDNF-expressing human-induced pluripotent stem cell-derived NPCs (hiPSC-NPCs) demonstrated higher differentiation toward a neuronal fate compared to control cells. In addition, expression of GDNF promoted endogenous tissue sparing and enhanced electrical integration of transplanted cells, which collectively resulted in improved neurobehavioral recovery. CRISPR-induced knockouts of the DLK1 gene in GDNF-expressing hiPSC-NPCs attenuated the effect on functional recovery, demonstrating that this effect is partially mediated through DLK1 expression. These results represent a mechanistically driven optimization of hiPSC-NPC therapy to redirect transplanted cells toward a neuronal fate and enhance their integration.

中文翻译:

GDNF通过减弱啮齿动物受伤脊髓中的Notch信号来挽救神经祖细胞的命运。

神经祖细胞(NPC)移植是一种治疗脊髓损伤(SCI)的有前途的策略。在这项研究中,我们表明在脊髓微环境中,损伤诱导的Notch激活将啮齿动物NPC的命运偏向星形胶质细胞。在筛选可能的临床相关因素以调节Notch信号的筛选中,我们鉴定了神经胶质细胞源性神经营养因子(GDNF)。GDNF通过介导δ样1同源物(DLK1)表达来减弱Notch信号,这与GDNF对细胞存活的影响无关。当将其移植到宫颈SCI的啮齿动物模型中时,与对照细胞相比,表达GDNF的人诱导多能干细胞来源的NPC(hiPSC-NPC)表现出更高的向神经元分化的能力。此外,GDNF的表达促进了内源性组织的节制并增强了移植细胞的电整合,从而共同改善了神经行为的恢复。CRISPR诱导的表达GDNF的hiPSC-NPC中DLK1基因的敲除减弱了对功能恢复的影响,表明该作用部分是通过DLK1表达介导的。这些结果代表了hiPSC-NPC治疗的机械驱动优化,可将移植的细胞重定向至神经元命运并增强其整合。
更新日期:2020-01-09
down
wechat
bug