当前位置: X-MOL 学术Curr. Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Cellular Innovation of the Cyanobacterial Heterocyst by the Adaptive Loss of Plasticity.
Current Biology ( IF 9.2 ) Pub Date : 2020-01-09 , DOI: 10.1016/j.cub.2019.11.056
Scott R Miller 1 , Reid Longley 1 , Patrick R Hutchins 1 , Thorsten Bauersachs 2
Affiliation  

Cellular innovation is central to biological diversification, yet its underlying mechanisms remain poorly understood [1]. One potential source of new cellular traits is environmentally induced phenotypic variation, or phenotypic plasticity. The plasticity-first hypothesis [2-4] proposes that natural selection can improve upon an ancestrally plastic phenotype to produce a locally adaptive trait, but the role of plasticity for adaptive evolution is still unclear [5-10]. Here, we show that a structurally novel form of the heterocyst, the specialized nitrogen-fixing cell of the multicellular cyanobacterium Fischerella thermalis, has evolved multiple times from ancestrally plastic developmental variation during adaptation to high temperature. Heterocyst glycolipids (HGs) provide an extracellular gas diffusion barrier that protects oxygen-sensitive nitrogenase [11, 12], and cyanobacteria typically exhibit temperature-induced plasticity in HG composition that modulates heterocyst permeability [13, 14]. By contrast, high-temperature specialists of F. thermalis constitutively overproduce glycolipid isomers associated with high temperature to levels unattained by plastic strains. This results in a less-permeable heterocyst, which is advantageous at high temperature but deleterious at low temperature for both nitrogen fixation activity and fitness. Our study illustrates how the origin of a novel cellular phenotype by the genetic assimilation and adaptive refinement of a plastic trait can be a source of biological diversity and contribute to ecological specialization.

中文翻译:

适应性丧失的可塑性,使蓝细菌性异型囊的细胞创新。

细胞创新是生物多样化的核心,但其基本机制仍知之甚少[1]。新的细胞性状的潜在来源之一是环境诱导的表型变异或表型可塑性。可塑性优先假说[2-4]提出自然选择可以改善祖先可塑性表型以产生局部适应性状,但可塑性在适应性进化中的作用仍不清楚[5-10]。在这里,我们表明异质囊的一种结构新颖形式,即多细胞蓝藻费氏菌的专门固氮细胞,已从适应适应高温的祖先塑料发育变异中进化了多次。异型囊糖脂(HGs)提供了一种细胞外气体扩散屏障,可保护对氧敏感的固氮酶[11,12],蓝细菌通常在HG成分中表现出温度诱导的可塑性,从而调节异型囊的通透性[13,14]。相比之下,高温链霉菌的高温专家组成性地将与高温相关的糖脂异构体过量生产到塑料菌株无法达到的水平。这导致了不可渗透的异质囊,这在高温下有利于固氮活性和适应性,而在低温下则有害。我们的研究表明,通过遗传同化和对塑料性状的适应性改进,新型细胞表型的起源如何成为生物多样性的来源并有助于生态专业化。蓝细菌和蓝细菌通常在HG成分中表现出温度诱导的可塑性,该可塑性可调节异型囊的通透性[13,14]。相比之下,高温链霉菌的高温专家组成性地将与高温相关的糖脂异构体过量生产到塑料菌株无法达到的水平。这导致了不可渗透的异质囊,这在高温下有利于固氮活性和适应性,而在低温下则有害。我们的研究表明,通过遗传同化和对塑料性状的适应性改进,新型细胞表型的起源如何成为生物多样性的来源并有助于生态专业化。蓝细菌和蓝细菌通常在HG成分中表现出温度诱导的可塑性,该可塑性可调节异型囊的通透性[13,14]。相比之下,高温链霉菌的高温专家组成性地将与高温相关的糖脂异构体过量生产到塑料菌株无法达到的水平。这导致了不可渗透的异质囊,这在高温下有利于固氮活性和适应性,而在低温下则有害。我们的研究表明,通过遗传同化和对塑料性状的适应性改进,新型细胞表型的起源如何成为生物多样性的来源并有助于生态专业化。F. Thermal的高温专家会构成性地过量生产与高温相关的糖脂异构体,使其达到塑性菌株无法达到的水平。这导致了不可渗透的异质囊,这在高温下有利于固氮活性和适应性,而在低温下则有害。我们的研究表明,通过遗传同化和对塑料性状的适应性改进,新型细胞表型的起源如何成为生物多样性的来源并有助于生态专业化。F. Thermal的高温专家会构成性地过量生产与高温相关的糖脂异构体,使其达到塑性菌株无法达到的水平。这导致了不可渗透的异质囊,这在高温下有利于固氮活性和适应性,而在低温下则有害。我们的研究表明,通过遗传同化和对塑料性状的适应性改进,新型细胞表型的起源如何成为生物多样性的来源并有助于生态专业化。在高温下有利于固氮活性和适应性,而在低温下则有害。我们的研究表明,通过遗传同化和对塑料性状的适应性改进,新型细胞表型的起源如何成为生物多样性的来源并有助于生态专业化。在高温下有利于固氮活性和适应性,而在低温下则有害。我们的研究表明,通过遗传同化和对塑料性状的适应性改进,新型细胞表型的起源如何成为生物多样性的来源并有助于生态专业化。
更新日期:2020-01-09
down
wechat
bug