当前位置: X-MOL 学术arXiv.cs.SE › 论文详情
Learning to Encode and Classify Test Executions
arXiv - CS - Software Engineering Pub Date : 2020-01-08 , DOI: arxiv-2001.02444
Foivos Tsimpourlas; Ajitha Rajan; Miltiadis Allamanis

The challenge of automatically determining the correctness of test executions is referred to as the test oracle problem and is one of the key remaining issues for automated testing. The goal in this paper is to solve the test oracle problem in a way that is general, scalable and accurate. To achieve this, we use supervised learning over test execution traces. We label a small fraction of the execution traces with their verdict of pass or fail. We use the labelled traces to train a neural network (NN) model to learn to distinguish runtime patterns for passing versus failing executions for a given program. Our approach for building this NN model involves the following steps, 1. Instrument the program to record execution traces as sequences of method invocations and global state, 2. Label a small fraction of the execution traces with their verdicts, 3. Designing a NN component that embeds information in execution traces to fixed length vectors, 4. Design a NN model that uses the trace information for classification, 5. Evaluate the inferred classification model on unseen execution traces from the program. We evaluate our approach using case studies from different application domains: 1. Module from Ethereum Blockchain, 2. Module from PyTorch deep learning framework, 3. Microsoft SEAL encryption library components, 4. Sed stream editor, 5. Value pointer library and 6. Nine network protocols from Linux packet identifier, L7-Filter. We found the classification models for all subject programs resulted in high precision, recall and specificity, over 95%, while only training with an average 9% of the total traces. Our experiments show that the proposed neural network model is highly effective as a test oracle and is able to learn runtime patterns to distinguish passing and failing test executions for systems and tests from different application domains.
更新日期:2020-01-09

 

全部期刊列表>>
物理学研究前沿热点精选期刊推荐
chemistry
《自然》编辑与您分享如何成为优质审稿人-信息流
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
自然职场线上招聘会
科研绘图
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
阿拉丁试剂right
张晓晨
田蕾蕾
李闯创
刘天飞
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
X-MOL
苏州大学
廖矿标
深圳湾
试剂库存
down
wechat
bug