当前位置: X-MOL 学术Phys. Rev. Appl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nonresonant Metasurface for Fast Decoding in Acoustic Communications
Physical Review Applied ( IF 4.6 ) Pub Date : 2020-01-09 , DOI: 10.1103/physrevapplied.13.014014
Xue Jiang , Chengzhi Shi , Yuan Wang , Joseph Smalley , Jianchun Cheng , Xiang Zhang

Acoustic communication is crucial in underwater exploration, where sound is the dominant information carrier, with significantly less loss and scattering than that of electromagnetic waves. However, the capacity of acoustic communication channels is limited due to the intrinsically low speed of sound relative to that of electromagnetic waves and because the attenuation of acoustic waves underwater increases with frequency. Recently, orbital angular momentum (OAM) has emerged as an alternative multiplexing degree of freedom to encode data onto vortex beams for increasing the capacity of acoustic communication. For information retrieval from the multiplexed acoustic vortices, an active scanning method and a passive resonant method are explored. Time-consuming scanning and complex postprocessing significantly restrict the data-transmission speed, while the large amount of resonant cascaded devices in the passive technique intrinsically results in a low efficiency and bulky volume of the system. Here, we propose and experimentally demonstrate a passive and nonresonant approach with the ability to separate different OAM states of multiplexed acoustic vortex beams in parallel using a parabolic-phased metasurface. The metasurface converts the spiral-phase patterns of vortex beams carrying various angular momenta into plane waves with different in-plane linear momenta. Our approach is compatible with multiplexing technologies, significantly enhancing the speed in acoustic communication.

中文翻译:

非共振超表面,用于声通信中的快速解码

声音通信在水下勘探中至关重要,在水下勘探中,声音是主要的信息载体,其损耗和散射比电磁波要少得多。但是,由于声音的固有速度相对于电磁波低,并且由于水下声波的衰减随频率增加,因此声音通信通道的容量受到限制。近来,轨道角动量(OAM)已经出现,作为一种替代的复用自由度,可以将数据编码到涡旋光束上以增加声学通信的能力。为了从多路声涡旋中获取信息,探索了一种主动扫描方法和一种被动共振方法。费时的扫描和复杂的后处理极大地限制了数据传输速度,无源技术中的大量谐振级联器件本质上导致系统效率低和体积大。在这里,我们提出并通过实验证明了一种无源且非共振的方法,该方法具有使用抛物线形超颖表面并行分离多路声涡旋光束的不同OAM状态的能力。超表面将携带各种角动量的涡旋光束的螺旋相位模式转换为具有不同平面内线性动量的平面波。我们的方法与多路复用技术兼容,从而大大提高了声音通信的速度。我们提出并通过实验证明了一种无源且非谐振的方法,该方法具有使用抛物线相形的超颖表面平行分离多路声涡旋光束的不同OAM状态的能力。超表面将携带各种角动量的涡旋光束的螺旋相位模式转换为具有不同平面内线性动量的平面波。我们的方法与多路复用技术兼容,从而大大提高了声音通信的速度。我们提出并通过实验证明了一种无源且非谐振的方法,该方法具有使用抛物线相形的超颖表面平行分离多路声涡旋光束的不同OAM状态的能力。超表面将携带各种角动量的涡旋光束的螺旋相位模式转换为具有不同平面内线性动量的平面波。我们的方法与多路复用技术兼容,从而大大提高了声音通信的速度。
更新日期:2020-01-09
down
wechat
bug