当前位置: X-MOL 学术Proc. Inst. Mech. Eng. C J. Mec. Eng. Sci. › 论文详情
Performance and noise analysis of vibratory feeder using dynamic rubber spring model
Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science ( IF 1.359 ) Pub Date : 2019-10-25 , DOI: 10.1177/0954406219884967
Chitransh Singh; Madan Lal Chandravanshi

In vibratory feeder, material feeding occurs due to the vibration of a trough mounted on helical springs. High vibration amplitude of trough causes the springs to jump and usually results in higher noise level generation and increase in force transmissibility in the support structure of the feeder. Reducing this noise without having significant changes in the dynamics of the feeder unit is a major challenge in the present industries. This paper presents a dynamic rubber spring model for vibratory feeders to reduce the noise level and the force transferred to the support structure of the feeder. Measurement of dynamic parameters such as vibration amplitude and magnitude of force transmitted to support structure, noise level, and conveying speed of particle analyses have been conducted experimentally on vibratory feeder with and without rubber gasket installed at spring support structure. The use of rubber gaskets at spring supports and their implication on force transmissibility and noise level of feeder is established experimentally. The performance analysis of feeder was also conducted using particle conveying speed on trough for different setups of feeder unit. It was found that the introduction of rubber gaskets at spring supports of the feeder increases the system damping, which helps in noise reduction as well as reduced amplitude of vibration and higher acceleration of trough. The increased acceleration leads to higher particle conveying velocity on the feeder trough.
更新日期:2020-01-09

 

全部期刊列表>>
Springer Nature 2019高下载量文章和章节
化学/材料学中国作者研究精选
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中国科学院大学化学科学学院
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug