当前位置: X-MOL 学术CrystEngComm › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Investigating the effects of activating agent morphology on the porosity and related capacitance of nanoporous carbons
CrystEngComm ( IF 3.1 ) Pub Date : 2020/01/08 , DOI: 10.1039/c9ce01702j
Servann Hérou 1, 2, 3, 4 , Maria Crespo 1, 2, 3, 4 , Magdalena Titirici 1, 2, 3, 4
Affiliation  

The increasing interest in nanostructured porous carbon materials in the field of energy storage and electrocatalysis has led to drastic improvement in their properties. These materials are still expensive to manufacture, often due to the harsh chemical treatments required to enhance porosity. In this article, we demonstrate that the process of activating carbons does not uniquely depend on the amount of activating agent (NaOH) but also on the contact area between the salt and the carbonaceous framework to be activated. We compare the microstructure, double layer capacitance and microporosity of carbon materials of the same chemical composition but obtained through two different protocols: electrospinning, which allows the formation of small NaOH domains (∼60 nm) homogeneously distributed across lignin fibres, and standard activation, which leads to the growth of larger NaOH domains within the lignin framework. As intimate contact between both phases ensures maximum activation, our electrospun material shows a remarkable capacitance (∼180 F g−1) in comparison to the material prepared through standard “mix and dry” activation procedure (∼10 F g−1). This is attributed to the generation of micropores (∼670 m2 g−1), tailored from the small activating salt template domains in intimate contact with the lignin framework. In summary, through this work we establish a relationship between the activating agent's morphology and its effect in porosity and energy storage performance. We present a facile method to interpenetrate the chemical activating agent within the carbon precursor structure before pyrolysis, through the efficient usage of the activating agent.

中文翻译:

研究活化剂形态对纳米孔碳的孔隙率和相关电容的影响

在能量存储和电催化领域中,对纳米结构多孔碳材料的兴趣日益浓厚,导致其性能得到了极大的改善。这些材料的制造成本仍然很高,通常是由于需要进行严格的化学处理以提高孔隙率。在本文中,我们证明了活化碳的过程并不仅取决于活化剂(NaOH)的量,而且还取决于盐与要活化的碳质骨架之间的接触面积。我们比较了化学成分相同但通过两种不同协议获得的碳材料的微观结构,双层电容和微孔性:静电纺丝,该纺丝可以形成均匀分布在木质素纤维上的小NaOH域(〜60 nm),以及标准活化,这导致木质素框架内较大的NaOH域的生长。由于两相之间的紧密接触可确保最大程度的活化,因此我们的静电纺丝材料具有出色的电容(约180 F g-1)与通过标准“混合和干燥”活化程序(〜10 F g -1)制备的材料相比。这归因于微孔(〜670 m 2 g -1)的产生,该微孔是由与木质素框架紧密接触的小活化盐模板结构域定制的。总之,通过这项工作,我们建立了活化剂的形态与其在孔隙率和储能性能方面的关系。我们提出了一种简便的方法,通过有效使用活化剂,在热解之前将化学活化剂渗透到碳前驱体结构内。
更新日期:2020-03-03
down
wechat
bug