当前位置: X-MOL 学术Chem. Geol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modeling singular mineralization processes due to fluid pressure fluctuations
Chemical Geology ( IF 3.9 ) Pub Date : 2020-03-01 , DOI: 10.1016/j.chemgeo.2019.119458
Yihui Xiong , Renguang Zuo , Keith C. Clarke , Stephen A. Miller , Jian Wang

Abstract Mineralization in the Earth's crust can be regarded as a singular process resulting in large amounts of mass accumulation and element enrichment over short time or space scales. The elemental concentrations modeled by fractals and multifractals show self-similarity and scale-invariant properties. We take the view that fluid-pressure variations in response to earthquakes or fault rupture are primarily responsible for changes in solubility and trigger transient physical and chemical variations in ore-forming fluids that enhance the mineralization process. Based on this general concept, we investigated mineral precipitation processes driven by rapid fluid pressure reductions by coupling mineralization to a cellular automaton model to reveal the nonlinear mechanism of the orogenic gold mineralization process using simulation. In the model, fluid pressure can increase to the rock failure condition, which was set as lithostatic pressure at a depth of 10 km (270 MPa), due to either porosity reduction or dehydration reactions. Rapid drops in pressure resulting from fault rupture or local hydrofracture may induce repeated gold precipitation. The geochemical patterns generated by the model evolve from depletion to enrichment patterns, and from spatially random to spatially clustered structures quantified by multifractal models and geostatistics. Results show how metal elements self-organize to form high metal concentration patterns displaying self-similarity and scale-invariance. These transitions are attributed to the growth and coalescence of sub-networks with different fluid pressures up to the percolation threshold, resulting in a wide range of fluid pressure reductions and gold precipitation in the form of clusters. The results suggest that cyclic evolution of fluid pressure and its effects on gold precipitation systems can effectively mimic the repeated mineralization superposition process, and generate complex geochemical patterns characterized by a multifractal model. The nonlinear behavior exhibits scale-invariance and self-organized critical threshold, where mineral phase separations result from fluid pressure reductions associated with fault failure.

中文翻译:

模拟由于流体压力波动引起的单一矿化过程

摘要 地壳成矿可以看作是在短时间内或空间尺度上导致大量物质积累和元素富集的单一过程。由分形和多重分形建模的元素浓度显示出自相似性和尺度不变性。我们认为,响应于地震或断层破裂的流体压力变化是溶解度变化的主要原因,并引发成矿流体的瞬时物理和化学变化,从而增强了矿化过程。基于这一一般概念,我们通过将矿化与元胞自动机模型耦合来研究由流体压力快速降低驱动的矿物沉淀过程,以利用模拟揭示造山金矿化过程的非线性机制。在模型中,由于孔隙率减少或脱水反应,流体压力可以增加到岩石破坏条件,该条件被设置为 10 公里(270 兆帕)深度的岩石静压力。断层破裂或局部水力压裂导致的压力快速下降可能会导致重复的金沉淀。该模型生成的地球化学模式从耗竭模式演变为富集模式,从空间随机演变为由多重分形模型和地质统计学量化的空间聚类结构。结果显示金属元素如何自组织以形成显示自相似性和尺度不变性的高金属浓度模式。这些转变归因于具有不同流体压力的子网络的增长和合并,直至渗透阈值,导致大范围的流体压力降低和金以簇的形式沉淀。结果表明,流体压力的循环演化及其对金沉淀系统的影响可以有效模拟重复成矿叠加过程,并生成以多重分形模型为特征的复杂地球化学模式。非线性行为表现出尺度不变性和自组织临界阈值,其中矿物相分离是由与故障故障相关的流体压力降低引起的。
更新日期:2020-03-01
down
wechat
bug