当前位置: X-MOL 学术Estuar. Coasts › 论文详情
Long-Term Stability of the Faunal Community of a Subtropical Estuary: Evaluating Disturbances in the Context of Interannual Variability
Estuaries and Coasts ( IF 2.319 ) Pub Date : 2020-01-08 , DOI: 10.1007/s12237-019-00684-1
Meagan N. Schrandt; Timothy C. MacDonald

Estuarine and coastal marine ecosystems can have significant intra- and interannual variability in faunal community structure, complicating management response to disturbances as disturbance effects must be detectable within normal variability and on timescales relevant to management entities. We examined a long-term, multi-gear dataset on estuarine faunal (fish and select invertebrate) communities to determine if community structure changes due to disturbances could be detected on management-relevant timescales (e.g., years), given that these communities have known seasonal and interannual variability. Results from multivariate, community-based analyses, and several univariate diversity indices for fauna of Tampa Bay, Florida, USA suggested general community stability over the long term, with the exceptions of 2005–2006 (prolonged red tide event) and 2010 (extreme cold event in winter). Community structure was notably outside the typical variability for both time periods. In 2005, species richness decreased by half for one gear type and was the lowest on record for the other two gear types. In 2010, when the relative abundance of a top predator decreased by 50% from cold-related mortality, Simpson’s diversity index was the lowest on record for one gear type. The red tide and extreme-cold events differed in duration and the number of taxa directly impacted (multispecies vs. single-species, respectively) but both multivariate and univariate analyses indicated significant deviation in the faunal community structure during these years. Within 1–3 years after these major events, however, the community seemed to have returned to a structure like that of previous years, suggesting long-term stability and resilience. Our results confirm that multivariate and univariate analyses can detect major disturbances to estuarine faunal communities, which gives management entities options for which analysis approach is appropriate for their needs. Since the Tampa Bay faunal communities recovered within 3 years, we suggest that where long-term monitoring exists, active restoration might be deferred while monitoring for signs of recovery following the removal of a perturbation. This is a fundamental part of sound adaptive management processes to promote sustainable ecosystems.
更新日期:2020-01-08

 

全部期刊列表>>
物理学研究前沿热点精选期刊推荐
chemistry
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
ACS Publications填问卷
屿渡论文,编辑服务
阿拉丁试剂right
南昌大学
王辉
南方科技大学
彭小水
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
赵延川
李霄羽
廖矿标
朱守非
试剂库存
down
wechat
bug