当前位置: X-MOL 学术Int. Math. Res. Notices › 论文详情
Exponential-Square Integrability, Weighted Inequalities for the Square Functions Associated to Operators, and Applications
International Mathematics Research Notices ( IF 1.452 ) Pub Date : 2020-01-08 , DOI: 10.1093/imrn/rnz326
Chen P, Duong X, Wu L, et al.

Let $X$ be a metric space with a doubling measure. Let $L$ be a nonnegative self-adjoint operator acting on $L^2(X)$, hence $L$ generates an analytic semigroup $e^{-tL}$. Assume that the kernels $p_t(x,y)$ of $e^{-tL}$ satisfy Gaussian upper bounds and Hölder continuity in $x$, but we do not require the semigroup to satisfy the preservation condition $e^{-tL}1 = 1$. In this article we aim to establish the exponential-square integrability of a function whose square function associated to an operator $L$ is bounded, and the proof is new even for the Laplace operator on the Euclidean spaces ${\mathbb R^n}$. We then apply this result to obtain: (1) estimates of the norm on $L^p$ as $p$ becomes large for operators such as the square functions or spectral multipliers; (2) weighted norm inequalities for the square functions; and (3) eigenvalue estimates for Schrödinger operators on ${\mathbb R}^n$ or Lipschitz domains of ${\mathbb R}^n$.
更新日期:2020-01-08

 

全部期刊列表>>
2020新春特辑
限时免费阅读临床医学内容
ACS材料视界
科学报告最新纳米科学与技术研究
清华大学化学系段昊泓
自然科研论文编辑服务
中国科学院大学楚甲祥
中国科学院微生物研究所潘国辉
中国科学院化学研究所
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug