当前位置: X-MOL 学术IEEE Trans. Antennas Propag. › 论文详情
Compact Unidirectional Conformal Antenna Based on Flexible High-Permittivity Custom-Made Substrate for Wearable Wideband Electromagnetic Head Imaging System
IEEE Transactions on Antennas and Propagation ( IF 4.435 ) Pub Date : 2019-09-09 , DOI: 10.1109/tap.2019.2938849
Abdulrahman S. M. Alqadami; Nghia Nguyen-Trong; Beadaa Mohammed; Anthony E. Stancombe; Michael Tobias Heitzmann; Amin Abbosh

An approach toward designing and building of a compact, low-profile, wideband, unidirectional, and conformal imaging antenna for electromagnetic (EM) head imaging systems is presented. The approach includes the realization of a custom-made flexible high-permittivity dielectric substrate to achieve a compact sensing antenna. The developed composite substrate is built using silicon-based poly-di-methyl-siloxane (PDMS) matrix and microscale of aluminium oxide (Al 2 O 3 ) and graphite (G) powders. Al 2 O 3 and G powders are used as fillers with different weight-ratio to manipulate and control the dielectric properties of the substrate for attaining better matched with the human head and reducing antenna’s physical size while keeping the PDMS flexibility feature. Using the custom-made substrate, a compact, wideband, and unidirectional on-body matched antenna for wearable EM head imaging system is realized. The antenna is configured as a multi-slot planar structure with four shorting pins, working as electric and magnetic dipoles at different frequency bands. The measured reflection coefficient (S11) shows an operating frequency band of 1–4.3 GHz. The time-average power density and the amplitude of the received signal inside the MRI-based realistic head phantom demonstrate a unidirectional propagation and high-fidelity factor (FF) of more than 90%. An array of 13 antennas are fabricated and tested on a realistic 3-D head phantom to verify the imaging capability of the proposed antenna. The reconstructed images of different targets inside the head phantom demonstrate the possibility of utilizing the conformal antenna arrays to detect and locate abnormality inside the brain using multistatic delay-multiply-and-sum beamforming algorithm.
更新日期:2020-01-07

 

全部期刊列表>>
2020新春特辑
限时免费阅读临床医学内容
ACS材料视界
科学报告最新纳米科学与技术研究
清华大学化学系段昊泓
自然科研论文编辑服务
中国科学院大学楚甲祥
中国科学院微生物研究所潘国辉
中国科学院化学研究所
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug