当前位置: X-MOL 学术IEEE Trans. Antennas Propag. › 论文详情
Wirelessly Powered Resonant-Heating Stent System: Design, Prototyping, and Optimization
IEEE Transactions on Antennas and Propagation ( IF 4.371 ) Pub Date : 2019-10-04 , DOI: 10.1109/tap.2019.2944553
Ying Yi; Jiaxu Chen; Kenichi Takahata

This article presents an electromagnetically powered stent designed for hyperthermia treatment of in-stent restenosis. The stent device based on medical-grade stainless steel serves as a radio frequency (RF) inductive receiver to produce mild heating wirelessly through resonant-coupling power transfer, while acting as a mechanical scaffold inside an artery similar to commercial stents. The device and its custom transmitter are prototyped and optimized to show efficient wireless power transfer and stent heating through in vitro tests. The inductive stent with its helical pattern is gold coated to achieve a $3.5\times $ higher quality ( $Q$ ) factor, improving heating performance of the device. The combinational use of independent resonant antennas with the power antenna is found to significantly boost stent temperature by up to 96% with an intermediate tissue layer. Upon matching the frequencies at which the $Q$ factors of the inductive stent, power antenna, and booster antenna are peaked, the stent excited through 10 mm-thick tissue exhibits a temperature increase of 18 °C, well over a necessary level for targeted hyperthermia treatment. The prototype achieves heating efficiencies (HEs) of 15.5–3.2 °C/W with a tissue thickness of 5–15 mm. These results indicate that the proposed resonant-heating stent system with the prototyped transmitter is promising for further development toward its clinical application.
更新日期:2020-01-07

 

全部期刊列表>>
欢迎访问IOP中国网站
自然职场线上招聘会
GIANT
产业、创新与基础设施
自然科研线上培训服务
材料学研究精选
胸腔和胸部成像专题
屿渡论文,编辑服务
何川
苏昭铭
陈刚
姜涛
李闯创
李刚
北大
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
上海纽约大学
陈芬儿
厦门大学
何振宇
史大永
吉林大学
卓春祥
张昊
杨中悦
试剂库存
down
wechat
bug