当前位置: X-MOL 学术IEEE Trans. Antennas Propag. › 论文详情
Wirelessly Powered Resonant-Heating Stent System: Design, Prototyping, and Optimization
IEEE Transactions on Antennas and Propagation ( IF 4.435 ) Pub Date : 2019-10-04 , DOI: 10.1109/tap.2019.2944553
Ying Yi; Jiaxu Chen; Kenichi Takahata

This article presents an electromagnetically powered stent designed for hyperthermia treatment of in-stent restenosis. The stent device based on medical-grade stainless steel serves as a radio frequency (RF) inductive receiver to produce mild heating wirelessly through resonant-coupling power transfer, while acting as a mechanical scaffold inside an artery similar to commercial stents. The device and its custom transmitter are prototyped and optimized to show efficient wireless power transfer and stent heating through in vitro tests. The inductive stent with its helical pattern is gold coated to achieve a $3.5\times $ higher quality ( $Q$ ) factor, improving heating performance of the device. The combinational use of independent resonant antennas with the power antenna is found to significantly boost stent temperature by up to 96% with an intermediate tissue layer. Upon matching the frequencies at which the $Q$ factors of the inductive stent, power antenna, and booster antenna are peaked, the stent excited through 10 mm-thick tissue exhibits a temperature increase of 18 °C, well over a necessary level for targeted hyperthermia treatment. The prototype achieves heating efficiencies (HEs) of 15.5–3.2 °C/W with a tissue thickness of 5–15 mm. These results indicate that the proposed resonant-heating stent system with the prototyped transmitter is promising for further development toward its clinical application.
更新日期:2020-01-07

 

全部期刊列表>>
2020新春特辑
限时免费阅读临床医学内容
ACS材料视界
科学报告最新纳米科学与技术研究
清华大学化学系段昊泓
自然科研论文编辑服务
中国科学院大学楚甲祥
中国科学院微生物研究所潘国辉
中国科学院化学研究所
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug