当前位置: X-MOL 学术Comp. Mater. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Shock Hugoniot and Mie-Grüneisen EOS of TiAl alloy: A molecular dynamics approach
Computational Materials Science ( IF 3.3 ) Pub Date : 2020-03-01 , DOI: 10.1016/j.commatsci.2019.109495
Jinsong Chen , Wenjun Chen , Shouan Chen , Guiyu Zhou , Tong Zhang

Abstract Molecular dynamics (MD) simulations coupling multi-scale shock technique (MSST) are performed to study the shock Hugoniot and Mie-Gruneisen equation of state (EOS) for TiAl alloy. The accuracy of the EAM potential for TiAl is examined by both melting temperature at a free pressure and Hugoniot curve. The material composition seriously affects the linear relation of shock wave velocity and particle velocity, Hugoniot curve, and internal energy. The Born-Mayer potential and Morse potential both can describe the cold curve at lower compressions, while the cold curve described via the Born-Mayer potential is larger than that of Morse potential at higher compressions. The shock melting temperature (Tm) is totally determined by Gruneisen coefficient γ, which shows an opposite trend as compared with the increasing Tm at the whole compressions. Mie-Gruneisen EOS presents a concave surface in pressure – specific volume – internal energy (P-V-E) space, which is independent of the reference curves utilized the cold curve and Hugoniot curve.

中文翻译:

TiAl 合金的 Shock Hugoniot 和 Mie-Grüneisen EOS:分子动力学方法

摘要 采用分子动力学(MD) 模拟耦合多尺度冲击技术(MSST) 研究TiAl 合金的冲击Hugoniot 和Mie-Gruneisen 状态方程(EOS)。TiAl 的 EAM 电位的准确性通过自由压力下的熔化温度和 Hugoniot 曲线来检查。材料成分严重影响冲击波速度与质点速度的线性关系、Hugoniot 曲线和内能。Born-Mayer 势和 Morse 势都可以描述较低压缩下的冷曲线,而通过 Born-Mayer 势描述的冷曲线大于更高压缩下的 Morse 势。冲击熔化温度 (Tm) 完全由 Gruneisen 系数 γ 决定,与整个压缩时 Tm 的增加趋势相反。
更新日期:2020-03-01
down
wechat
bug