当前位置: X-MOL 学术Cell. Mol. Life Sci. › 论文详情
Dynein-mediated nuclear translocation of yes-associated protein through microtubule acetylation controls fibroblast activation.
Cellular and Molecular Life Sciences ( IF 7.014 ) Pub Date : 2020-01-07 , DOI: 10.1007/s00018-019-03412-x
Eunae You,Panseon Ko,Jangho Jeong,Seula Keum,Jung-Woong Kim,Young-Jin Seo,Woo Keun Song,Sangmyung Rhee

Myofibroblasts are the major cell type that is responsible for increase in the mechanical stiffness in fibrotic tissues. It has well documented that the TGF-β/Smad axis is required for myofibroblast differentiation under the rigid substrate condition. However, the mechanism driving myofibroblast differentiation in soft substrates remains unknown. In this research, we demonstrated that interaction of yes-associated protein (YAP) and acetylated microtubule via dynein, a microtubule motor protein drives nuclear localization of YAP in the soft matrix, which in turn increased TGF-β1-induced transcriptional activity of Smad for myofibroblast differentiation. Pharmacological and genetical disruption of dynein impaired the nuclear translocation of YAP and decreased the TGF-β1-induced Smad activity even though phosphorylation and nuclear localization of Smad occurred normally in α-tubulin acetyltransferase 1 (α-TAT1) knockout cell. Moreover, microtubule acetylation prominently appeared in the fibroblast-like cells nearby the blood vessel in the fibrotic liver induced by CCl4 administration, which was conversely decreased by TGF-β receptor inhibitor. As a result, quantitative inhibition of microtubule acetylation may be suggested as a new target for overcoming fibrotic diseases.
更新日期:2020-01-07

 

全部期刊列表>>
宅家赢大奖
向世界展示您的会议墙报和演示文稿
全球疫情及响应:BMC Medicine专题征稿
新版X-MOL期刊搜索和高级搜索功能介绍
化学材料学全球高引用
ACS材料视界
x-mol收录
自然科研论文编辑服务
南方科技大学
南方科技大学
西湖大学
中国科学院长春应化所于聪-4-8
复旦大学
课题组网站
X-MOL
深圳大学二维材料实验室张晗
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug