当前位置: X-MOL 学术BMC Genomics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Genetic regulatory networks for salt-alkali stress in Gossypium hirsutum with differing morphological characteristics.
BMC Genomics ( IF 4.4 ) Pub Date : 2020-01-06 , DOI: 10.1186/s12864-019-6375-9
Yanchao Xu 1 , Richard Odongo Magwanga 1, 2 , Xiu Yang 1 , Dingsha Jin 1 , Xiaoyan Cai 1 , Yuqing Hou 1 , Yangyang Wei 1, 3 , Zhongli Zhou 1 , Kunbo Wang 1 , Fang Liu 1
Affiliation  

BACKGROUND Cotton grows in altering environments that are often unfavorable or stressful for its growth and development. Consequently, the plant must cope with abiotic stresses such as soil salinity, drought, and excessive temperatures. Alkali-salt stress response remains a cumbersome biological process and is regulated via a multifaceted transcriptional regulatory network in cotton. RESULTS To discover the molecular mechanisms of alkali-salt stress response in cotton, a comprehensive transcriptome analysis was carried out after alkali-salt stress treatment in three accessions of Gossypium hirsutum with contrasting phenotype. Expression level analysis proved that alkali-salt stress response presented significant stage-specific and tissue-specific. GO enrichment analysis typically suggested that signal transduction process involved in salt-alkali stress response at SS3 and SS12 stages in leaf; carbohydrate metabolic process and oxidation-reduction process involved in SS48 stages in leaf; the oxidation-reduction process involved at all three phases in the root. The Co-expression analysis suggested a potential GhSOS3/GhCBL10-SOS2 network was involved in salt-alkali stress response. Furthermore, Salt-alkali sensitivity was increased in GhSOS3 and GhCBL10 Virus-induced Gene Silencing (VIGS) plants. CONCLUSION The findings may facilitate to elucidate the underlying mechanisms of alkali-salt stress response and provide an available resource to scrutinize the role of candidate genes and signaling pathway governing alkali-salt stress response.

中文翻译:

具有不同形态特征的陆地棉盐碱胁迫的遗传调控网络。

背景技术棉花生长在变化的环境中,该环境通常对其生长和发育不利或有压力。因此,植物必须应对非生物胁迫,例如土壤盐分,干旱和温度过高。碱盐胁迫反应仍然是繁琐的生物学过程,并通过棉花的多层面转录调控网络进行调控。结果为探索棉花碱盐胁迫响应的分子机制,对三个不同表型的陆地棉进行碱盐胁迫处理后,进行了转录组分析。表达水平分析证明,碱盐胁迫​​反应表现出明显的阶段特异性和组织特异性。GO富集分析通常表明,信号转导过程涉及叶片SS3和SS12阶段的盐碱胁迫响应。叶片SS48阶段涉及的碳水化合物代谢过程和氧化还原过程;根的所有三个阶段都涉及氧化还原过程。共表达分析表明,潜在的GhSOS3 / GhCBL10-SOS2网络参与了盐碱胁迫响应。此外,在GhSOS3和GhCBL10病毒诱导的基因沉默(VIGS)植物中盐碱敏感性增加。结论该发现可能有助于阐明碱盐胁迫反应的潜在机制,并提供详细的资源来研究候选基因和控制碱盐胁迫反应的信号通路的作用。叶片SS48阶段涉及的碳水化合物代谢过程和氧化还原过程;根的所有三个阶段都涉及氧化还原过程。共表达分析表明,潜在的GhSOS3 / GhCBL10-SOS2网络参与了盐碱胁迫响应。此外,在GhSOS3和GhCBL10病毒诱导的基因沉默(VIGS)植物中盐碱敏感性增加。结论该发现可能有助于阐明碱盐胁迫应答的潜在机制,并提供详细的资源来研究候选基因和控制碱盐胁迫应答的信号通路的作用。叶片SS48阶段涉及的碳水化合物代谢过程和氧化还原过程;根的所有三个阶段都涉及氧化还原过程。共表达分析表明,潜在的GhSOS3 / GhCBL10-SOS2网络参与了盐碱胁迫响应。此外,在GhSOS3和GhCBL10病毒诱导的基因沉默(VIGS)植物中盐碱敏感性增加。结论该发现可能有助于阐明碱盐胁迫应答的潜在机制,并提供详细的资源来研究候选基因和控制碱盐胁迫应答的信号通路的作用。共表达分析表明,潜在的GhSOS3 / GhCBL10-SOS2网络参与了盐碱胁迫响应。此外,在GhSOS3和GhCBL10病毒诱导的基因沉默(VIGS)植物中盐碱敏感性增加。结论该发现可能有助于阐明碱盐胁迫应答的潜在机制,并提供详细的资源来研究候选基因和控制碱盐胁迫应答的信号通路的作用。共表达分析表明,潜在的GhSOS3 / GhCBL10-SOS2网络参与了盐碱胁迫响应。此外,在GhSOS3和GhCBL10病毒诱导的基因沉默(VIGS)植物中盐碱敏感性增加。结论该发现可能有助于阐明碱盐胁迫应答的潜在机制,并提供详细的资源来研究候选基因和控制碱盐胁迫应答的信号通路的作用。
更新日期:2020-01-06
down
wechat
bug