当前位置: X-MOL 学术Nat. Nanotechnol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Lithium whisker growth and stress generation in an in situ atomic force microscope–environmental transmission electron microscope set-up
Nature Nanotechnology ( IF 38.3 ) Pub Date : 2020-01-06 , DOI: 10.1038/s41565-019-0604-x
Liqiang Zhang 1, 2 , Tingting Yang 1 , Congcong Du 1 , Qiunan Liu 1 , Yushu Tang 2 , Jun Zhao 1 , Baolin Wang 3 , Tianwu Chen 4 , Yong Sun 1 , Peng Jia 1 , Hui Li 1 , Lin Geng 1 , Jingzhao Chen 1 , Hongjun Ye 1 , Zaifa Wang 1 , Yanshuai Li 1 , Haiming Sun 1 , Xiaomei Li 1 , Qiushi Dai 1 , Yongfu Tang 1 , Qiuming Peng 1 , Tongde Shen 1 , Sulin Zhang 4 , Ting Zhu 3 , Jianyu Huang 1, 5
Affiliation  

Lithium metal is considered the ultimate anode material for future rechargeable batteries1,2, but the development of Li metal-based rechargeable batteries has achieved only limited success due to uncontrollable Li dendrite growth3,4,5,6,7. In a broad class of all-solid-state Li batteries, one approach to suppress Li dendrite growth has been the use of mechanically stiff solid electrolytes8,9. However, Li dendrites still grow through them10,11. Resolving this issue requires a fundamental understanding of the growth and associated electro-chemo-mechanical behaviour of Li dendrites. Here, we report in situ growth observation and stress measurement of individual Li whiskers, the primary Li dendrite morphologies12. We combine an atomic force microscope with an environmental transmission electron microscope in a novel experimental set-up. At room temperature, a submicrometre whisker grows under an applied voltage (overpotential) against the atomic force microscope tip, generating a growth stress up to 130 MPa; this value is substantially higher than the stresses previously reported for bulk13 and micrometre-sized Li14. The measured yield strength of Li whiskers under pure mechanical loading reaches as high as 244 MPa. Our results provide quantitative benchmarks for the design of Li dendrite growth suppression strategies in all-solid-state batteries.



中文翻译:

原位原子力显微镜-环境透射电子显微镜装置中的锂晶须生长和应力产生

锂金属被认为是未来可充电电池的终极负极材料1,2,但由于锂枝晶生长失控3,4,5,6,7 ,基于锂金属的可充电电池的开发只取得了有限的成功。在一大类全固态锂电池中,抑制锂枝晶生长的一种方法是使用机械刚性固体电解质8,9。然而,锂枝晶仍然通过它们生长10,11。解决这个问题需要对锂枝晶的生长和相关的电化学机械行为有一个基本的了解。在这里,我们报告了单个锂晶须、初级锂枝晶形态12的原位生长观察和应力测量. 我们将原子力显微镜与环境透射电子显微镜结合在一个新的实验装置中。在室温下,亚微米晶须在对原子力显微镜尖端施加的电压(过电位)下生长,产生高达 130 MPa 的生长应力;该值大大高于先前报道的块体13和微米尺寸的 Li 14的应力。在纯机械载荷下测得的锂晶须屈服强度高达 244 MPa。我们的结果为全固态电池中锂枝晶生长抑制策略的设计提供了定量基准。

更新日期:2020-01-06
down
wechat
bug