当前位置: X-MOL 学术ACS Appl. Electron. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Self-Assembled Graphene Ribbon Device on SiC
ACS Applied Electronic Materials ( IF 4.7 ) Pub Date : 2020-01-16 , DOI: 10.1021/acsaelm.9b00696
Bi-Yi Wu, Yanfei Yang, Albert F. Rigosi, Jiuning Hu, Hsin-Yen Lee, Guangjun Cheng, Vishal Panchal, Mattias Kruskopf, Hanbyul Jin, Kenji Watanabe, Takashi Taniguchi, David B. Newell, Randolph E. Elmquist, Chi-Te Liang

Graphene ribbons, which may be fabricated by a wide variety of experimental techniques such as chemical processing, unzipping or etching of carbon nanotubes, molecular precursors, ion implantation, and so on, can find promising applications in interconnects, terahertz sensors, and plasmonic devices. Here we report measurements on self-assembled graphene ribbons that are prepared by a controlled high-temperature sublimation technique. The epitaxial graphene ribbons on SiC can be readily and efficiently located by confocal laser scanning microscopy for device fabrication using a removable metal protection layer to avoid contamination of the graphene and hexagonal boron nitride to serve as a top-gate dielectric spacer. These self-assembled graphene ribbons have smooth edges, and the observation of a magnetoresistance side peak in such a structure is consistent with diffusive boundary scattering in the quasi-ballistic regime. In contrast, graphene ribbons defined by electron-beam lithography and subsequent conventional reactive ion etching on the same SiC wafer only show pronounced negative magnetoresistance due to strong disorder in the edge structures (chemical dopants, the resolution of electron-beam lithography, etc.). Our experimental approaches are applicable to wafer-scale, graphene-based integrated circuits.

中文翻译:

SiC上自组装石墨烯带器件

可以通过多种实验技术制造的石墨烯碳带,例如化学处理,碳纳米管的解压缩或蚀刻,分子前体,离子注入等,可以在互连,太赫兹传感器和等离激元器件中找到有前途的应用。在这里,我们报告了通过自控高温升华技术制备的自组装石墨烯带的测量结果。SiC上的外延石墨烯带可以通过共聚焦激光扫描显微镜轻松,有效地定位,以使用可移除的金属保护层来避免器件受到石墨烯和六方氮化硼的污染,从而可以用作顶栅电介质隔离层。这些自组装的石墨烯碳带边缘光滑,在这种结构中观察到的磁阻侧峰与准弹道状态下的扩散边界散射一致。相反,通过电子束光刻和随后在同一SiC晶片上进行常规反应离子刻蚀定义的石墨烯带仅由于边缘结构(化学掺杂剂,电子束光刻的分辨率等)的强烈紊乱而显示出显着的负磁阻。 。我们的实验方法适用于晶圆级,基于石墨烯的集成电路。通过电子束光刻和随后在同一SiC晶片上进行的常规反应离子刻蚀定义的石墨烯带,由于边缘结构(化学掺杂剂,电子束光刻的分辨率等)的强烈紊乱而仅表现出明显的负磁阻。我们的实验方法适用于晶圆级,基于石墨烯的集成电路。通过电子束光刻和随后的常规反应离子刻蚀在同一SiC晶片上定义的石墨烯带仅由于边缘结构(化学掺杂剂,电子束光刻的分辨率等)的强烈紊乱而显示出明显的负磁阻。我们的实验方法适用于晶圆级,基于石墨烯的集成电路。
更新日期:2020-01-16
down
wechat
bug