当前位置: X-MOL 学术J. Macromol. Sci. B. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Non-isothermal Thermogravimetric Degradation Kinetics, Reaction Models and Thermodynamic Parameters of Vinylidene Fluoride Based Fluorinated Polymers
Journal of Macromolecular Science Part B-Physics ( IF 1.4 ) Pub Date : 2019-11-22 , DOI: 10.1080/00222348.2019.1679986
Arjun Singh 1 , Shalu Singh 1, 2 , Pramod Kumar Soni 1 , Niladri Mukherjee 1
Affiliation  

Commercial fluororubber SKF 32, fluoroplastic F-32L, fluoroelastomer Kel-F, fluoroplastic FK 800 (labeled as SKF 32, F-32L, Kel-F and FK 800) and an in-house prepared poly(vinylidene fluoride-chlorotrifluoroethylene) (FKM) copolymer were investigated in terms of their thermal degradation kinetics, reaction models and corresponding thermodynamic parameters. All samples underwent a single step thermal degradation using thermogravimetric analysis (TGA) at different heating rates under nitrogen atmosphere. The kinetic parameters were determined through the Kissinger method and three isoconversional methods; viz. the Flynn-Wall-Ozawa (FWO), Kissinger-Akahira-Sunose (KAS) and Starink. The activation energies of the SKF 32, F-32L, Kel-F, FK 800 and FKM obtained using the Kissinger method were 206, 200, 185, 221 and 243 kJ mol‒1, respectively. The activation energy values for the degradation obtained using the KAS method were: 180–225 kJ mol−1 for SKF 32, 192–209 kJ mol−1 for F-32L, 163–185 kJ mol−1 for Kel-F, 213–227 kJ mol−1 for FK 800 and 187–269 kJ mol−1 for FKM with the extents of conversion (α) = 0.1–0.9. These values of the activation energies obtained from the KAS method were in good agreement with those obtained using the FWO and Starink methods. In addition, the appropriate degradation reaction models were determined by means of the Coats-Redfern and Criado methods. The thermodynamic parameters, such as activation Gibb free energy, ΔG*, activation enthalpy, ΔH*, and activation entropy, ΔS*, for formation of the activated complexes during the thermal degradation were also determined and discussed. The positive values of the Ea, ΔG*, ΔH*, and ΔS* for SKF 32, F-32L, FK 800 and FKM indicated a non-spontaneous process, while the positive values of the Ea, ΔG* and ΔH*, and negative value of ΔS* for Kel-F meant that the formation of the activated complex was accompanied by a smaller decrease of entropy than for the other polymers.



中文翻译:

偏二氟乙烯系氟化聚合物的非等温热重降解动力学,反应模型及热力学参数

商用氟橡胶SKF 32,氟塑料F-32L,氟橡胶Kel-F,氟塑料FK 800(标记为SKF 32,F-32L,Kel-F和FK 800)和内部制备的聚偏二氟乙烯-氯三氟乙烯(FKM)研究了共聚物的热降解动力学,反应模型和相应的热力学参数。使用热重分析(TGA)在氮气气氛下以不同的加热速率对所有样品进行一步热降解。动力学参数通过基辛格方法和三种同转化方法确定。即 Flynn-Wall-Ozawa(FWO),Kissinger-Akahira-Sunose(KAS)和Starink。使用Kissinger方法获得的SKF 32,F-32L,Kel-F,FK 800和FKM的活化能分别为206、200、185、221和243 kJ mol ‒1, 分别。180-225千焦摩尔:使用KAS方法获得的劣化的活化能值-1对SKF 32,192-209千焦摩尔-1为F-32L,163-185千焦摩尔-1为凯尔-F,213 -227千焦摩尔-1为FK 800和187-269千焦摩尔-1对于FKM,转换范围(α)= 0.1–0.9。从KAS方法获得的活化能值与使用FWO和Starink方法获得的活化能值非常一致。另外,借助于Coats-Redfern和Criado方法确定了合适的降解反应模型。还确定并讨论了在热降解过程中形成活化复合物的热力学参数,例如活化吉布自由能ΔG*,活化焓ΔH*和活化熵ΔS*。SKF 32,F-32L,FK 800和FKM的E a,ΔG*,ΔH*和ΔS*的正值表示非自发过程,而E a的正值表示,对于Kel-F,ΔG*和ΔH*,ΔS*为负值意味着与其他聚合物相比,活化复合物的形成伴随着较小的熵降低。

更新日期:2020-01-06
down
wechat
bug