当前位置: X-MOL 学术arXiv.cs.DM › 论文详情
Compressed Quadratization of Higher Order Binary Optimization Problems
arXiv - CS - Discrete Mathematics Pub Date : 2020-01-02 , DOI: arxiv-2001.00658
Avradip Mandal; Arnab Roy; Sarvagya Upadhyay; Hayato Ushijima-Mwesigwa

Recent hardware advances in quantum and quantum-inspired annealers promise substantial speedup for solving NP-hard combinatorial optimization problems compared to general-purpose computers. These special-purpose hardware are built for solving hard instances of Quadratic Unconstrained Binary Optimization (QUBO) problems. In terms of number of variables and precision of these hardware are usually resource-constrained and they work either in Ising space {-1,1} or in Boolean space {0,1}. Many naturally occurring problem instances are higher-order in nature. The known method to reduce the degree of a higher-order optimization problem uses Rosenberg's polynomial. The method works in Boolean space by reducing the degree of one term by introducing one extra variable. In this work, we prove that in Ising space the degree reduction of one term requires the introduction of two variables. Our proposed method of degree reduction works directly in Ising space, as opposed to converting an Ising polynomial to Boolean space and applying previously known Rosenberg's polynomial. For sparse higher-order Ising problems, this results in a more compact representation of the resultant QUBO problem, which is crucial for utilizing resource-constrained QUBO solvers.
更新日期:2020-01-06

 

全部期刊列表>>
Springer Nature 2019高下载量文章和章节
化学/材料学中国作者研究精选
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中国科学院大学化学科学学院
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug