当前位置: X-MOL 学术arXiv.cs.CE › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical investigation into fracture resistance of bone following adaptation
arXiv - CS - Computational Engineering, Finance, and Science Pub Date : 2020-01-02 , DOI: arxiv-2001.00647
Karol Lewandowski, {\L}ukasz Kaczmarczyk, Ignatios Athanasiadis, John F. Marshall, Chris J. Pearce

Bone adapts in response to its mechanical environment. This evolution of bone density is one of the most important mechanisms for developing fracture resistance. A finite element framework for simulating bone adaptation, commonly called bone remodelling, is presented. This is followed by a novel method to both quantify fracture resistance and to simulate fracture propagation. The authors' previous work on the application of configurational mechanics for modelling fracture is extended to include the influence of heterogeneous bone density distribution. The main advantage of this approach is that configurational forces, and fracture energy release rate, are expressed exclusively in terms of nodal quantities. This approach avoids the need for post-processing and enables a fully implicit formulation for modelling the evolving crack front. In this paper density fields are generated from both (a) bone adaptation analysis and (b) subject-specific geometry and material properties obtained from CT scans. It is shown that, in order to correctly evaluate the configurational forces at the crack front, it is necessary to have a spatially smooth density field with higher regularity than if the field is directly approximated on the finite element mesh. Therefore, discrete density data is approximated as a smooth density field using a Moving Weighted Least Squares method. Performance of the framework is demonstrated using numerical simulations for bone adaptation and subsequent crack propagation, including consideration of an equine 3rd metacarpal bone. The degree of bone adaption is shown to influence both fracture resistance and the resulting crack path.

中文翻译:

适应后骨抗断裂性的数值研究

骨骼适应其机械环境。骨密度的这种演变是产生抗骨折性的最重要机制之一。介绍了用于模拟骨骼适应的有限元框架,通常称为骨骼重塑。其次是一种量化断裂阻力和模拟断裂扩展的新方法。作者之前在应用构型力学建模骨折方面的工作扩展到包括异质骨密度分布的影响。这种方法的主要优点是构型力和断裂能量释放率仅用节点量表示。这种方法避免了对后处理的需要,并且可以使用完全隐式的公式来对不断变化的裂纹前沿进行建模。在本文中,密度场是从 (a) 骨骼适应分析和 (b) 从 CT 扫描获得的特定对象几何形状和材料特性中生成的。结果表明,为了正确评估裂纹前沿的构型力,与直接在有限元网格上近似的场相比,有必要具有规则性更高的空间平滑密度场。因此,离散密度数据被近似为使用移动加权最小二乘法的平滑密度场。该框架的性能使用骨骼适应和随后的裂纹扩展的数值模拟来证明,包括考虑马的第三掌骨。骨适应的程度会影响抗断裂性和由此产生的裂纹路径。结果表明,为了正确评估裂纹前沿的构型力,与直接在有限元网格上近似的场相比,有必要具有规则性更高的空间平滑密度场。因此,离散密度数据被近似为使用移动加权最小二乘法的平滑密度场。该框架的性能使用骨骼适应和随后的裂纹扩展的数值模拟来证明,包括考虑马的第三掌骨。骨适应的程度会影响抗断裂性和由此产生的裂纹路径。结果表明,为了正确评估裂纹前沿的构型力,与直接在有限元网格上近似的场相比,有必要具有规则性更高的空间平滑密度场。因此,离散密度数据被近似为使用移动加权最小二乘法的平滑密度场。该框架的性能使用骨骼适应和随后的裂纹扩展的数值模拟来证明,包括考虑马的第三掌骨。骨适应的程度会影响抗断裂性和由此产生的裂纹路径。与直接在有限元网格上近似的场相比,必须具有规则性更高的空间平滑密度场。因此,离散密度数据被近似为使用移动加权最小二乘法的平滑密度场。该框架的性能使用骨骼适应和随后的裂纹扩展的数值模拟来证明,包括考虑马的第三掌骨。骨适应的程度会影响抗断裂性和由此产生的裂纹路径。与直接在有限元网格上近似的场相比,有必要具有规则性更高的空间平滑密度场。因此,离散密度数据被近似为使用移动加权最小二乘法的平滑密度场。该框架的性能使用骨骼适应和随后的裂纹扩展的数值模拟来证明,包括考虑马的第三掌骨。骨适应的程度会影响抗断裂性和由此产生的裂纹路径。包括考虑马的第三掌骨。骨适应的程度会影响抗断裂性和由此产生的裂纹路径。包括考虑马的第三掌骨。骨适应的程度会影响抗断裂性和由此产生的裂纹路径。
更新日期:2020-01-06
down
wechat
bug