当前位置: X-MOL 学术Int. J. Heat Fluid Flow › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Diffusion layer thickness in turbulent flow
International Journal of Heat and Fluid Flow ( IF 2.6 ) Pub Date : 2020-02-01 , DOI: 10.1016/j.ijheatfluidflow.2019.108530
A.A. Burluka

Abstract Average thickness of diffusive layers in a turbulent flow is described using an idea of Lagrangian meso-scale element convected by mean flow and large scale turbulence. This idea enables a formulation of a simple model for the diffusive layer thickness assuming that its evolution is determined by the diffusive growth and two components, compressive normal and tangential, of the turbulent strain rate tensor. Analysis of the possible effects of the folding action of the turbulence leads to the conclusion that the folding becomes significant only at the scales far superior to the considered dimensions of the meso-scale elements, thus it may be neglected in the present formulation. The evolution equation for the meso-scale element thickness is derived and put to test against experiments conducted in plane and round jets. The model proved capable of producing, using the same values of two model constants, values of the diffusive layer thickness in good qualitative agreement with the measurements. While the present numerical simulations of the turbulent jets are made using very simple, perhaps simplistic, flow and turbulence description, they nonetheless allow a fairly accurate estimation of turbulence microscales at different locations in a jet. It turns out that neither Kolmogorov nor Taylor scale provides a good universal reference scale for the diffusive layer thickness and it is local turbulence conditions and history of the meso-scale element determining the latter.

中文翻译:

湍流中的扩散层厚度

摘要 利用平均流和大尺度湍流对流的拉格朗日中尺度元素的思想描述了湍流中扩散层的平均厚度。这个想法可以为扩散层厚度建立一个简单的模型,假设它的演变是由扩散生长和湍流应变率张量的两个分量(压缩法向和切向)决定的。对湍流折叠作用的可能影响的分析得出的结论是,折叠仅在远高于所考虑的中尺度元素的尺寸的尺度上才变得显着,因此在本公式中可以忽略。推导出了中尺度单元厚度的演化方程,并将其用于在平面和圆形射流中进行的实验进行测试。该模型证明能够使用两个模型常数的相同值产生与测量结果具有良好定性一致性的扩散层厚度值。虽然目前湍流射流的数值模拟是使用非常简单的,也许是简单化的流动和湍流描述进行的,但它们仍然允许对射流中不同位置的湍流微尺度进行相当准确的估计。事实证明,无论是 Kolmogorov 还是 Taylor 尺度都没有为扩散层厚度提供良好的通用参考尺度,并且是局部湍流条件和中尺度元素的历史决定了后者。虽然目前湍流射流的数值模拟是使用非常简单的,也许是简单化的流动和湍流描述进行的,但它们仍然允许对射流中不同位置的湍流微尺度进行相当准确的估计。事实证明,无论是 Kolmogorov 还是 Taylor 尺度都没有为扩散层厚度提供良好的通用参考尺度,并且是局部湍流条件和中尺度元素的历史决定了后者。虽然目前湍流射流的数值模拟是使用非常简单的,也许是简单化的流动和湍流描述进行的,但它们仍然允许对射流中不同位置的湍流微尺度进行相当准确的估计。事实证明,无论是 Kolmogorov 还是 Taylor 尺度都没有为扩散层厚度提供良好的通用参考尺度,并且是局部湍流条件和中尺度元素的历史决定了后者。
更新日期:2020-02-01
down
wechat
bug