当前位置: X-MOL 学术Comput. Vis. Image Underst. › 论文详情
Graph convolutional neural network for multi-scale feature learning
Computer Vision and Image Understanding ( IF 2.645 ) Pub Date : 2019-12-02 , DOI: 10.1016/j.cviu.2019.102881
Michael Edwards; Xianghua Xie; Robert I. Palmer; Gary K.L. Tam; Rob Alcock; Carl Roobottom

Automatic deformable 3D modeling is computationally expensive, especially when considering complex position, orientation and scale variations. We present a volume segmentation framework to utilize local and global regularizations in a data-driven approach. We introduce automated correspondence search to avoid manually labeling landmarks and improve scalability. We propose a novel marginal space learning technique, utilizing multi-resolution pooling to obtain local and contextual features without training numerous detectors or excessively dense patches. Unlike conventional convolutional neural network operators, graph-based operators allow spatially related features to be learned on the irregular domain of the multi-resolution space, and a graph-based convolutional neural network is proposed to learn representations for position and orientation classification. The graph-CNN classifiers are used within a marginal space learning framework to provide efficient and accurate shape pose parameter hypothesis prediction. During segmentation, a global constraint is initially non-iteratively applied, with local and geometric constraints applied iteratively for refinement. Comparison is provided against both classical deformable models and state-of-the-art techniques in the complex problem domain of segmenting aortic root structure from computerized tomography scans. The proposed method shows improvement in both pose parameter estimation and segmentation performance.
更新日期:2020-01-04

 

全部期刊列表>>
化学/材料学中国作者研究精选
ACS材料视界
南京大学
自然科研论文编辑服务
剑桥大学-
中国科学院大学化学科学学院
南开大学化学院周其林
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug