当前位置: X-MOL 学术Comput. Vis. Image Underst. › 论文详情
Comparison of monocular depth estimation methods using geometrically relevant metrics on the IBims-1 dataset
Computer Vision and Image Understanding ( IF 2.645 ) Pub Date : 2019-11-26 , DOI: 10.1016/j.cviu.2019.102877
Tobias Koch; Lukas Liebel; Marco Körner; Friedrich Fraundorfer

The task of predicting a dense depth map from a monocular RGB image, commonly known as single-image depth estimation (SIDE) or monocular depth estimation (MDE), is an active research topic in computer vision for decades. With the significant progress of deep models in recent years, new standards were set yielding remarkable results in capturing the 3D structure from a single image. However, established evaluation schemes of predicted depth maps are still limited, as they only consider global statistics of the depth residuals. In order to allow for a geometry-aware analysis, we propose a set of novel quality criteria addressing the preservation of depth discontinuities and planar regions, the depth consistency across the image, and a distance-related assessment. As current datasets do not fulfill the requirements of all proposed error metrics, we provide a new high-quality indoor RGB-D test dataset, acquired by a digital single-lens reflex (DSLR) camera together with a laser scanner. New insights into the performance of current state-of-the-art SIDE approaches, as well as subtle differences among them, could be unveiled by employing the proposed error metrics on our reference dataset. Additionally, investigations on the real-world applicability of SIDE methods by a series of experiments regarding different image augmentations, illumination changes and textured planar regions have shown current limitations in this research field.
更新日期:2020-01-04

 

全部期刊列表>>
化学/材料学中国作者研究精选
Springer Nature 2019高下载量文章和章节
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中国科学院大学化学科学学院
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug